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1 Introduction

We wish to compute, say, the infinite series

∞∑

<=0

4<3 + 2<2 − 8< − 23

2<
.

Alright, whatever, seems a bit tricky.
Consider the numerator, a polynomial in <, and write down its values for < =

1, 2, 3, . . . in a row.

−23 −25 1 79 233 487 865 . . .
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Still doesn’t look so nice. But now, write a row below it, whose numbers are the differ-
ence of the number on its top right and its top left.

−23 −25 1 79 233 . . .
−2 26 78 154 . . .

28 52 76 . . .
24 24 . . .

0 . . .
. . .

If you take the first column of numbers, add them up, and multiply them by two, this
turns out to be the answer: it happens to be that

∞∑

<=0

4<3 + 2<2 − 8< − 23

2<
= 2(−23 − 2 + 28 + 24) = 54.

Moreover, this “always happens” to be, which we will now show.

2 Finite differences and computing polynomials

But first, we define a discrete analogue of the derivative, the difference operator, or the
first difference operator.

Definition 2.1. The difference operator Δ is defined by the equation

(Δ5 )(F) ≔ 5 (F + 1) − 5 (F).

Wedefine a relatedoperatorwhich is interesting in its own right, butwhosepurpose
right now is to one specific calculation easier.

Definition 2.2. The shift operator ) is defined by

() 5 )(F) ≔ 5 (F + 1).

Then, we can write) = Δ + 1, where 1 is the identity operator. This immediately
gives us the following result.
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Theorem 2.3. Let 5 be some function. We have that

5 (<) =
<∑

9=0

(

<

9

)

Δ
9 5 (0).

Proof.

5 (<) = 5 (0 + <)

= ) < 5 (0)

= (Δ + 1)< 5 (0)

=

[
<∑

9=0

(

<

9

)

Δ
9
1
<−9

]

5 (0)

=

<∑

9=0

(

<

9

)

Δ
9 5 (0).

�

One remark is in order: just as differentiating enough times kills off polynomials,
taking enough finite differences does the same thing as well.

Remark 2.4. If >(F) is a polynomial, then for all; > deg >,

(Δ; >) ≡ 0.

Proof. Left to the reader. �

This gives us an easy corollary to Theorem 2.3.

Corollary 2.5. If >(F) is a polynomial in F, we have that

>(<) =

deg >
∑

9=0

(

<

9

)

(Δ9 >)(0).

Proof. Left to the reader. �

This result is one of the easier pieces of proving the identity, which we can now
finally precisely state using the difference operator.
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3 The identity

Constructing the triangular array we constructed earlier.
Now instead of numbers, we can write it with notation.

5 (0) 5 (1) 5 (2) 5 (3) · · ·

Δ5 (0) Δ5 (1) Δ5 (2) · · ·

Δ
2 5 (0) Δ

2 5 (1) · · ·

Δ
3 5 (0) · · ·

. . .

Now, we can see that “taking the first column” accounts to looking at (Δ9 5 )(0) for all
9.

We’ve looked at (Δ9 5 )(0) for a bit now— in Theorem 2.3, in Corollary 2.5, and
now in the identity we want to prove. This is another “finite calculus” analogy—The-
orem 2.3 is an analogue of Taylor series expansion. Instead of expanding 5 as a sum of
derivatives 5 (9) (0), we expand 5 as a sum of differences (Δ9 5 )(0).

In its more general form, the identity looks very similar to Corollary 2.5. Without
further ado, here it is.

Theorem 3.1 (The theorem, more generally). Let > be some polynomial. Fix a
number 0 > 1. Then,

∞∑

<=0

>(<)

0<
=

deg >
∑

9=0

0

(0 − 1)9+1
(Δ9 >)(0).

We can’t quite prove this yet, though.
For the meantime, we note that something awesome happens in the 0 = 2 case,

which was demonstrated in the introduction.

Corollary 3.2 (The theorem, less generally). Let > be some polynomial. Then,

∞∑

<=0

>(<)

2<
= 2

deg >
∑

9=0

(Δ9 >)(0).

Proof. Left to the reader. �
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Here’s a quick example:

Example 3.3. Consider the sum

∞∑

<=0

<

2<
,

so now >(<) = <, and 0 = 2.
The finite differences are (Δ0 >)(0) = 0, (Δ1 >)(0) = 1, so

∞∑

<=0

<

2<
= 2(0 + 1)

4 Falling factorials and Newton’s binomial formula

Next, we define an operation that is like taking powers, just like how differences are like
taking derivatives.

Definition 4.1. Let; ≥ 0 be a number. The falling factorial, F;, is defined by

F; ≔ F · (F − 1) · · · (F −; + 1)
︸                            ︷︷                            ︸

; factors

.

Note that the ordinary factorial <! is <<. On the flip side, if; < < are two integers,
then <; = <!/(<−;)!. With that said, we can see then that

(<
9

)

= <9/9!, when < and
9 are positive integers.

Even better, falling factorials allow us to give a more general definition of the bi-
nomial coefficient, in which the upper index is no longer required to be a nonnegative
integer.

Definition 4.2. Let 9 ∈ N, and let < be any number. The binomial coefficient
(<
9

)

is defined by
(

<

9

)

≔

<9

9!
.

Nowwehave identitieswhichwe couldn’t havedreamed of without amore general
binomial coefficient, for example:
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Lemma 4.3 (Upper negation). Let 9 ∈ N and let < be any number again. Then

(

−<

9

)

= (−1)9
(

< + 9 − 1

9

)

.

Proof. We start by expanding the left hand side, which is

(

−<

9

)

=

(−<)9

9!
.

Then, we manipulate the product (−<)9 with our bare hands:

(−<)9 =
(

(−<)
) (

(−<) − 1
) (

(−<) − 2
)

· · ·
(

(−<) − 9 + 1
)

=

(

(−1)(<)
) (

(−1)(< + 1)
) (

(−1)(< + 2)
)

· · ·
(

(−1)(< + 9 − 1)
)

= (−1)9
(

<
) (

< + 1
) (

< + 2
)

· · ·
(

< + 9 − 1
)

= (−1)9 (< + 9 − 1)9 .

Then,
(

−<

9

)

=

(−<)9

9!
=

(−1)9 (< + 9 − 1)9

9!
= (−1)9

(

< + 9 − 1

9

)

.

�

What this tells us is that negating the upper index can be “straightened out” this
way into an expression without a negative upper index.

As another application of our new binomial coefficient, we have a powerful and
important generalization of the binomial formula, which involves a series rather than a
sum.

Theorem 4.4 (Newton’s binomial formula). For any 0 ∈ R,

(1 + F)0 =
∞∑

9=0

(

0

9

)

F9 .

Proof. Doing this rigorously takes forever, so I refer to [GrinbergAC], Theorem 3.8.3.

�
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However, in proving our identity, we’ll want the above sum to run over the upper
index of the binomial coefficient. Luckily, we do have a version that runs over the upper
index.

Theorem 4.5. Fix 9 ∈ N. Then

∞∑

<=0

(

<

9

)

F< =

F9

(1 − F)9+1
.

Proof. We begin with Newton’s binomial formula

(1 + F)0 =
∞∑

9=0

(

0

9

)

F9 ,

And we, superficially for now, replace 9 with <, so we have

(1 + F)0 =
∞∑

<=0

(

0

<

)

F<.

Now 9 is back in our pool of free variables, so put 0 = −9 − 1. Then,

1

(1 + F)9+1
=

∞∑

<=0

(

−(9 + 1)

<

)

F<.

Nowwe hit it with upper negation,

(

−(9 + 1)

<

)

= (−1)<
(

(9 + 1) + < − 1

<

)

= (−1)<
(

< + 9

<

)

,

so now we finally have a < in the top index,

1

(1 + F)9+1
=

∞∑

<=0

(

< + 9

<

)

(−1)<F<.

To get rid of the < in the bottom index, we use binomial coefficient symmetry,

(

< + 9

<

)

=

(

< + 9

(< + 9) − <

)

=

(

< + 9

9

)

,
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and now we’re almost done, since we have

1

(1 + F)9+1
=

∞∑

<=0

(

< + 9

9

)

(−1)<F<.

To cancel out the (−1)<, we introduce another (−1)< by substituting −F for F, so

1

(1 − F)9+1
=

∞∑

<=0

(

< + 9

9

)

(−1)<(−F)<

=

∞∑

<=0

(

< + 9

9

)

(−1)<(−1)<F<

=

∞∑

<=0

(

< + 9

9

)

(−1)2<F<

=

∞∑

<=0

(

< + 9

9

)

F<.

And finally, we shift by a F9 term, so that we can do a re-indexing of the sum,

F9

(1 + F)9+1
= F9

∞∑

<=0

(

< + 9

9

)

F<

=

∞∑

<=0

(

< + 9

9

)

F<+9

=

∞∑

<=9

(

<

9

)

F<.

Since, for integers,
(<
9

)

= 0 if < < 9, we can rewrite the sum to start from < = 0, since
this amounts to padding leading zeros.

∞∑

<=9

(

<

9

)

F< =

∞∑

<=9

(

<

9

)

F< +
9−1∑

<=0

(

<

9

)

F<

=

∞∑

<=0

(

<

9

)

F<.

�
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Now we basically have the other piece we need to prove our identity.

Corollary 4.6. Fix 9. We have that

∞∑

<=0

(

<

9

)

1

0<
=

0

(0 − 1)9+1
.

Proof. Left to the reader. �

5 Proof of the identity

Nowwe have all the tools to prove this!

Proof of Theorem 3.1. By Theorem 2.3, we have that

>(<) =

deg >
∑

9=0

(

<

9

)

(Δ9 >)(0)

Next, we grind it out a little.

∞∑

<=0

>(<)

0<
=

∞∑

<=0

∑deg >

9=0

(<
9

)

(Δ9 >)(0)

0<
By Corollary 2.5

=

∞∑

<=0

deg >
∑

9=0

(<
9

)

(Δ9 >)(0)

0<
Push the 0−< inside the sum

=

deg >
∑

9=0

∞∑

<=0

(<
9

)

(Δ9 >)(0)

0<
Interchange sums

=

deg >
∑

9=0

(Δ9 >)(0)
∞∑

<=0

(<
9

)

0<
Pull out (Δ9 ) > (0) from

sum running over <

=

deg >
∑

9=0

(Δ9 >)(0)
0

(0 − 1)9+1
By Corollary 4.6

=

deg >
∑

9=0

0

(0 − 1)9+1
(Δ9 >)(0).
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