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1 Introduction

We wish to compute, say, the infinite series

i 473 4+ 212 — 8n - 23
n=0 2"

Alright, whatever, seems a bit tricky.
Consider the numerator, a polynomial in 7, and write down its values for » =
1,2,3,...inarow.

=23 =25 1 79 233 487 865
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Still doesn’t look so nice. But now, write a row below it, whose numbers are the differ-
ence of the number on its top right and its top left.

=23 =25 1 79 233
-2 26 78 154
28 52 76
24 24
0

If you take the first column of numbers, add them up, and multiply them by two, this
turns out to be the answer: it happens to be that

i4n3+2n2—8n—23

> = 2(=23 — 2+ 28 + 24) = 54.

n=0

Moreover, this “always happens” to be, which we will now show.

2 Finite differences and computing polynomials

But first, we define a discrete analogue of the derivative, the difference operator, or the
first difference operator.

Definition 2.1. The difference operator A is defined by the equation
(Af)(x) =Ff(x+1) - f(x).

We define arelated operator which is interesting in its own right, but whose purpose
right now is to one specific calculation easier.

Definition 2.2. The shift operator T is defined by
(TH)(x) =f(x+1).

Then, we can write 7 = A + 1, where 1 is the identity operator. This immediately
gives us the following result.
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Theorem 2.3. Let / be some function. We have that

n

ron=3. ()atro.

k=0

Proof.

F(n) = F(0+n)
= T"f(0)
= (A+1)(0)

- [Z (Z)Ah"kl £(0)

k

=0
_ O (7) Ak
= (k)A £(0).
k=0
O

One remark is in order: just as differentiating enough times kills off polynomials,
taking enough finite differences does the same thing as well.

Remark 2.4. If p(x) is a polynomial, then for all m > deg p,

(A" p) = 0.

Proof. Left to the reader. O
This gives us an easy corollary to Theorem 2.3.

Corollary 2.5. If p(x) is a polynomial in x, we have that

deg p

_ AN:

2= 3, ()@t po.
k=0

Proof. Left to the reader. m]

This result is one of the easier pieces of proving the identity, which we can now
finally precisely state using the difference operator.
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3 The identity

Constructing the triangular array we constructed earlier.
Now instead of numbers, we can write it with notation.

£(0) £(1) £(2) £(3)
AF(0) Af(1) Af(2)
A%£(0) A%f(1)
A3£(0)

Now, we can see that “taking the first column” accounts to looking at (A% 7)(0) forall
k.

We’ve looked at (A* /)(0) for a bit now— in Theorem 2.3, in Corollary 2.5, and
now in the identity we want to prove. This is another “finite calculus” analogy— The-
orem 2.3 is an analogue of Tzylor series expansion. Instead of expanding /* as a sum of
derivatives f(k) (0), we expand / as a sum of differences (A/ef) (0).

In its more general form, the identity looks very similar to Corollary 2.5. Without
further ado, here it is.

Theorem 3.1 (The theorem, more generally). Let p be some polynomial. Fix a
number 2 > 1. Then,

deg p

%P() D R A,

k=0

We can’t quite prove this yet, though.
For the meantime, we note that something awesome happens in the 2 = 2 case,
which was demonstrated in the introduction.

Corollary 3.2 (The theorem, less generally). Let p be some polynomial. Then,

) deg p
p(n)
Z =2 (A*p)(0).
n=0 k=0
Proof. Left to the reader. O
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Here’s a quick example:

Example 3.3. Consider the sum

sonow p(n) =n,and a = 2.

The finite differences are (Aop)(O) =0, (Alp) (0) =1,s0

(e8]

Zzﬁ—Z(OH)

n=0

4 Falling factorials and Newton’s binomial formula

Next, we define an operation that is /zke taking powers, just like how differences are /zke
taking derivatives.

Definition 4.1. Let 7z > 0 be a number. The falling factorial, x, is defined by

Z=x-(x=-1)---(x—m+1).

m factors

Note that the ordinary factorial 7! is #2. On the flip side, if 7 < 7 are two integers,
then 2 = n!/(n — m)!. With that said, we can see then that (Z) = nk/k!, when 7 and
k are positive integers.

Even better, falling factorials allow us to give a more general definition of the bi-
nomial coefficient, in which the upper index is no longer required to be a nonnegative
integer.

Definition 4.2. Let £ € N, and let 7 be any number. The binomial coefficient (Z)

is defined by
k
n n=
( k) -

Now we have identities which we couldn’t have dreamed of without a more general
binomial coefficient, for example:
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Lemma 4.3 (Upper negation). Let # € N and let 2 be any number again. Then
—n fn+k—1
= (-1 .
(7] =)
Proof. We start by expanding the left hand side, which is

7)-%
k] kO

Then, we manipulate the product (—n)% with our bare hands:

(—n)k = ((—n)) ((—n) - 1) ((—n) - 2) S ((—n) —k+ 1)
= (D) (D +D) (DG +2) - (D +k-1)

= D (n) (nr 1) (nr2) - (nrk-1)

=(-D*(n+k-1)E

Then,

-n\ _ (-n)f (—1)/€(n+/e-1)@_(_1),€ n+k-1
(k)_ kT k! B ( k )

]

What this tells us is that negating the upper index can be “straightened out” this
way into an expression without a negative upper index.

As another application of our new binomial coefficient, we have a powerful and
important generalization of the binomial formula, which involves a series rather than a
sum.

Theorem 4.4 (Newton’s binomial formula). Forany 2 € R,

(1+x)* = i (Z)xk.

k=0

Proof. Doing this rigorously takes forever, so I refer to [GrinbergAC], Theorem 3.8.3.
O
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However, in proving our identity, we’ll want the above sum to run over the #pper
index of the binomial coefficient. Luckily, we do have a version that runs over the upper
index.

Theorem 4.5. Fix £ € N. Then
Sl
- (1-x) k+1°
Proof. We begin with Newton’s binomial formula
a _ N a\ i
(1+x) —Z (k)x s
k=0
And we, superficially for now, replace £ with 7, so we have
a __ S a n
(1+x)*= Z (n)x .
n=0
Now £ is back in our pool of free variables, so put 2 = —k — 1. Then,

1 o [-(k+ D),
oD (A

n=0

Now we hit it with upper negation,
(—(k+ 1)) _ (_1)n((k+ D+n- ) (-1)" (n+/e)
n n

so now we finally have a 7 in the top index,

1 n+k nen
(1+x)/e+l :Z( )( 1)

n=0

To get rid of the 7 in the bottom index, we use binomial coefficient symmetry,

n+k\ n+k _[(n+k
( n )_((n+/e)—n)_( k )’
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and now we’re almost done, since we have
1 n+k
— 1 n n
e =l e

To cancel out the (—1)”, we introduce another (—1)” by substituting —x for x, so

1 n+k "
[ e

7n=0
-2 (”;k)<—1)"(—1>”x"

(e8]

Z(}’L+/€)( 1)2” n

n

2,

And finally, we shift by a x* term, so that we can do a re-indexing of the sum,
xF _ Z (n + k)
(1+ x)k’r1
B i (n + /e)
n=0

(69
n

-0
(n + /e)xn
-0 k

Since, for integers, (Z) = 0if # < k, we can rewrite the sum to start from 7z = 0, since
this amounts to padding leading zeros.
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Now we basically have the other piece we need to prove our identity.

Corollary 4.6. Fix k. We have that

n=0

Proof. Left to the reader.

s Proof of the identity

Now we have all the tools to prove this!
Proof'of Theorem 3.1. By Theorem 2.3, we have that

deg p

20 =3, 1) atno

k=0

Next, we grind it out a little.

Z p(n) Z S0B7 () (A% ) (0)

o (7)1 B a
Z(/e);_(g—l)/”l'

— By Corollary 2.5
n=0 4
© AP (1) (Ak 5)(0
= Z Z % Push the 27" inside the sum
n=0 k=0
d 0
S S (3)(A*p)(0)
= Z — Interchange sums
k=0 n=0
& 2 S (Z) Il out (A* fi
_ Pull o 0) from
= (A )(O) Z ; sun?trlgnni:é(ovirn
k=0 n=0
deg p 4
= (A/ep) (0) m By Corollary 4.6
k=0
deg p
=5 — L (8*p)(0).
k+1
i (a— D™
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