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What is this?
These are notes based on my reading of Humphreys’s “Introduction to Lie Algebras
and Representation Theory”.
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Table of notation
− Awildcard variable

[𝑛] The set {1, . . . , 𝑛}

Z≥0 The set of nonnegative integers

Z>0 The set of positive integers

𝑉 A generic vector space

k A generic field

Mat𝑛(k) The ring of 𝑛 × 𝑛matrices over the field k

𝑒𝑖𝑗 The standard basis ofMat𝑛

𝑥.𝑣 The action of 𝑥 on 𝑣.

𝛿𝑖𝑗 The Kronecker delta

[−]? The Iverson bracket

𝔤𝔩 The general linear Lie algebra

𝔰𝔩 The special linear Lie algebra

𝔬 The orthogonal Lie algebra

𝔰𝔭 The symplectic Lie algebra

𝔱 The Lie algebra of upper triangular matrices

𝔫 The Lie algebra of strictly upper triangular matrices
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1 Basic definitions and examples
Convention 1.0.1. All vector spaces considered are finite dimensional and no as-
sumptions are made yet about underlying fields. We use𝑉 and k to denote generic
vector spaces and fields respectively.

We will often use . to denote action in general, so if 𝑣 ∈ 𝑉 and 𝑥 ∈ End𝑉 , we
will define

𝑥.𝑣 ≔ 𝑥 (𝑣).

1.1 Lie algebras

Definition 1.1.1. A Lie algebra 𝔤 is a vector space equipped with a product

[−, −] : 𝔤 × 𝔤 → 𝔤,

(𝑥, 𝑦) ↦→
[
𝑥𝑦

]
,

such that

(L1) [−, −] is bilinear,

(L2) [𝑥𝑥] = 0 for all 𝑥 ∈ 𝔤, and

(L3)
[
𝑥

[
𝑦𝑧

] ]
+

[
𝑦 [𝑧𝑥]

]
+

[
𝑧
[
𝑥𝑦

] ]
= 0.

We refer to
[
𝑥𝑦

]
as the bracket or the commutator of 𝑥 and 𝑦.

(L3) is referred to as the Jacobi identity.
As an exercise in using this definition, we show the following:

Proposition 1.1.2. Brackets are anticommutative, i.e

[𝑥𝑦] = −[𝑦𝑥] . (L2’)

is a relation in any Lie algebra.

Proof. By (L2), we have that [
𝑥 + 𝑦, 𝑥 + 𝑦

]
= 0,

and by (L1),
[𝑥𝑥] +

[
𝑥𝑦

]
+

[
𝑦𝑥

]
+

[
𝑦𝑦

]
= 0.

4



Lie algebras Jasper Ty

By (L2) again, [
𝑥𝑦

]
+

[
𝑦𝑥

]
= 0,

which completes the proof. □

Wewill look at ourfirst exampleof aLie algebra, closely associatedwith thegeneral
linear group GL(𝑉 ) of invertible endomorphisms of a vector space𝑉 .

Definition 1.1.3 (𝔤𝔩, abstractly). Let𝑉 be a vector space. The general linear
algebra 𝔤𝔩(𝑉 ) is defined to be the Lie algebra with underlying vector spaceEnd𝑉
and bracket given by [

𝑥𝑦
]
= 𝑥𝑦 − 𝑦𝑥

defined with End𝑉 ’s natural ring structure.

End𝑉 ’s aforementioned ring structure is exactly that of 𝑛 × 𝑛 matrices, where
𝑛 = dim𝑉 . Then, the following definition gives us a more concrete avatar of 𝔤𝔩, and
is in a sense “the only” finite dimensional 𝔤𝔩.

Definition 1.1.4 (𝔤𝔩, concretely). Letk be some field and let 𝑛 be a positive integer.
The general linear algebra 𝔤𝔩𝑛(k) is defined

𝔤𝔩𝑛(k) ≔ 𝔤𝔩
(
Mat𝑛(k)

)
.

In this setting, we can easily compute the bracket of 𝔤𝔩 relative to its standard basis:

Proposition 1.1.5. Let {𝑒𝑖𝑗 }𝑛𝑖,𝑗=0 be the standard basis of 𝔤𝔩𝑛(k). Then[
𝑒𝑖𝑗 𝑒𝑘𝑙

]
= 𝛿𝑗𝑘𝑒𝑖 𝑙 − 𝛿𝑙 𝑖 𝑒𝑘𝑗 ,

where 𝛿 is the Kronecker delta.

Proof. Using the Iverson bracket (see Definition 8.1.1),

(𝑒 𝑝𝑞)𝑖𝑗 =
[
𝑝 = 𝑖 ∧ 𝑞 = 𝑗

] ?
=

[
𝑝 = 𝑖

] ? [
𝑞 = 𝑗

] ?
and so

(𝑒 𝑝𝑞𝑒𝑟 𝑠)𝑖𝑗 =
𝑛∑
𝑘=1

(𝑒 𝑝𝑞)𝑖𝑘 (𝑒𝑟 𝑠)𝑘𝑗
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=
𝑛∑
𝑘=1

[
𝑝 = 𝑖 ∧ 𝑞 = 𝑘

] ? [
𝑟 = 𝑘 ∧ 𝑠 = 𝑗

] ?
=

𝑛∑
𝑘=1

( [
𝑞 = 𝑘

] ? [𝑟 = 𝑘]?
) [

𝑝 = 𝑖
] ? [

𝑠 = 𝑗
] ?

=

(
𝑛∑
𝑘=1

[
𝑞 = 𝑟 = 𝑘

] ?) [
𝑝 = 𝑖 ∧ 𝑠 = 𝑗

] ?
= 𝛿𝑞𝑟 (𝑒 𝑝𝑠)𝑖𝑗 .

So 𝑒 𝑝𝑞𝑒𝑟 𝑠 = 𝛿𝑞𝑟 𝑒 𝑝𝑠 . Similarly, 𝑒𝑟 𝑠𝑒 𝑝𝑞 = 𝛿𝑠 𝑝𝑒𝑟𝑞 . □

Importantly, many Lie algebras, and in fact all the Lie algebras we are concerned
with, occur as subalgebras of the general linear algebra— a subalgebra of a Lie algebra
𝔤 is a subspace of 𝔤 that is closed under 𝔤’s bracket.

Definition 1.1.6. A linear Lie algebra is a subalgebra of 𝔤𝔩𝑛(k) for some 𝑛.

All finite dimensional Lie algebras are linear, in the sense that they are isomorphic
to some linear Lie algebra.

1.2 Examples
We have four distinguished families of Lie algebras:

Aℓ , Bℓ , Cℓ , Dℓ .

These are parameterized by a positive integer ℓ , and they classify all but five of the so-
called semisimple Lie algebras.

1.2.1 Type A: the special linear algebra

Definition 1.2.1. Let𝑉 be a vector spacewith basis v = (𝑣1, . . . , 𝑣𝑛) and dual basis
v∗ = (𝑣1, . . . , 𝑣𝑛) The trace tr 𝑥 of an endomorphism 𝑥 ∈ End𝑉 of𝑉 is defined
to be the sum

𝑛∑
𝑖=1

𝑣𝑖 𝑥𝑣𝑖 .

In other words, it is the sum of the diagonal entries of the matrix representation of 𝑥.
The trace is independent of the basis used to compute it (see Theorem 8.2.19 in the
Appendix), hence it is a well defined quantity.
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Definition 1.2.2 (The type Aℓ Lie algebra). Let𝑉 have dimension 𝑛 = ℓ + 1.
We define Aℓ to be the special linear algebra 𝔰𝔩(𝑉 ), the set of all traceless
endomorphisms of𝑉 , which means

𝐴ℓ ≔ 𝔰𝔩(𝑉 ) ≔
{
𝑥 ∈ 𝔤𝔩(𝑉 ) : tr 𝑥 = 0

}
.

As is the case with 𝔤𝔩(𝑉 ) and 𝔤𝔩𝑛(k), we also define

𝐴ℓ ≔ 𝔰𝔩ℓ+1 (k) ≔
{
𝑥 ∈ 𝔤𝔩ℓ+1 (k) : tr 𝑥 = 0

}
and will refer to them interchangeably.

This algebra is so named because of its connectionwith the special linear group
SL(𝑉 ), a distinguished subgroup of GL(𝑉 ). Unsurprisingly, 𝔰𝔩(𝑉 ) shares a similar
relationship to 𝔤𝔩(𝑉 ).

Proposition 1.2.3. 𝔰𝔩(𝑉 ) is a subalgebra of 𝔤𝔩(𝑉 ).

Proof. The trace is a linear operator tr : 𝔤𝔩𝑛(k) → k. Since the kernel of a linear
operator is a subspace of its domain, we conclude that 𝔰𝔩𝑛(k) = ker tr is a subspace of
𝔤𝔩.

Finally, the fact that tr(𝑥𝑦 − 𝑦𝑥) = tr(𝑥𝑦) − tr(𝑦𝑥) = 0 for all 𝑥, 𝑦 ∈ 𝔤𝔩𝑛(k)
means that 𝔤𝔩𝑛(k)’s Lie bracket is closed in 𝔰𝔩𝑛(k). □

Lastly, we will compute the dimension of 𝔰𝔩(𝑉 ). Firstly, it has to be strictly less
than that of 𝔤𝔩(𝑉 )’s, as it is a proper subalgebra of 𝔤𝔩(𝑉 ). Hence

dim𝔰𝔩(𝑉 ) < dim𝔤𝔩(𝑉 ) = (ℓ + 1)2.

So
dim𝔰𝔩(𝑉 ) ≤ (ℓ + 1)2 − 1 = ℓ (ℓ + 2)

However, we can explicitly name ℓ (ℓ + 2) linearly independent elements of 𝔰𝔩𝑛(k):

1. All the off-diagonal entries 𝑒𝑖𝑗 where 𝑖 ≠ 𝑗—there are (ℓ +1)2−(ℓ +1) = ℓ 2+ℓ
of these.

2. All of the elements 𝑒𝑖 𝑖 − 𝑒𝑖+1,𝑖+1, of which there are (ℓ + 1) − 1 = ℓ .

So,
dim𝔰𝔩(𝑉 ) ≥ ℓ + 2 + ℓ + ℓ = ℓ (ℓ + 2).

And, putting it together, we have proven:
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Proposition 1.2.4.

dimAℓ = dim𝔰𝔩(𝑉 ) = dim𝔰𝔩𝑛(k) = ℓ (ℓ + 2).

1.2.2 The rest; bilinear forms

Types B, C, and D are all defined with regards to certain bilinear forms.

Definition 1.2.5. Let𝑉 be a vector space over the field k.
A bilinear form is a function 𝜔 :𝑉 ×𝑉 → k that is bilinear, i.e linear in each

argument separately.

Definition 1.2.6. Let𝑉 be a vector space with a bilinear form 𝜔.
If 𝑥 is an endomorphism of𝑉 , we say that 𝑥 is 𝜔-skew if

𝜔
(
𝑥.𝑢, 𝑣

)
+ 𝜔

(
𝑢, 𝑥.𝑣

)
= 0

for all 𝑢, 𝑣 ∈𝑉 .
We denote the set of all 𝜔-skew endomorphisms of𝑉 by 𝔬𝜔 (𝑉 ).

Theorem 1.2.7. Let 𝔬𝜔 (𝑉 ) is a Lie subalgebra of 𝔤𝔩(𝑉 ).

Proof. Let 𝑥, 𝑦 ∈ 𝔬𝜔 (𝑉 ), and let 𝑢, 𝑣 ∈𝑉 .

𝜔
( [
𝑥𝑦

]
.𝑢, 𝑣

)
+ 𝜔

(
𝑢,

[
𝑥𝑦

]
.𝑣
)

= 𝜔
(
(𝑥𝑦 − 𝑦𝑥).𝑢, 𝑣

)
+ 𝜔

(
𝑢, (𝑥𝑦 − 𝑦𝑥).𝑣

)
=

(
𝜔
(
𝑥𝑦.𝑢, 𝑣

)
+ 𝜔

(
𝑢, 𝑥𝑦.𝑣

))
−

(
𝜔
(
𝑦𝑥.𝑢, 𝑣

)
+ 𝜔

(
𝑢, 𝑦𝑥.𝑣

))
=

(
𝜔
(
𝑥𝑦.𝑢, 𝑣

)
+ 𝜔

(
𝑢, 𝑥𝑦.𝑣

))
−

(
𝜔
(
𝑢, 𝑥𝑦.𝑣

)
+ 𝜔

(
𝑥𝑦.𝑢, 𝑣

))
= 0.

Hence
[
𝑥𝑦

]
∈ 𝔬𝜔 (𝑉 ). □

1.2.3 Type B: the odd-dimensional orthogonal algebra
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Definition 1.2.8. A symmetric nondegenerate form on a vector space𝑉 is a
bilinear form 𝜔 :𝑉 ×𝑉 → k such that

(a) 𝜔(𝑣, 𝑢) = 𝜔(𝑢, 𝑣), and

(b) 𝜔(𝑣, 𝑢) = 0 for all 𝑣 ∈𝑉 implies that 𝑢 = 0.

Definition 1.2.9 (The type Bℓ Lie algebra). Let dim𝑉 = 2ℓ + 1, and let𝑉 be
endowed with a symmetric nondegenerate form 𝜔.

We define Bℓ to be the orthogonal algebra 𝔬(𝑉 ):

Bℓ ≔ 𝔬(𝑉 ) ≔ 𝔬𝜔 (𝑉 ).

1.2.4 Type C: the symplectic algebra

Definition 1.2.10. A symplectic form on a vector space𝑉 is a function form
𝜔 :𝑉 ×𝑉 → k such that

(a) 𝜔 is bilinear,

(b) 𝜔(𝑣, 𝑢) = −𝜔(𝑢, 𝑣), and

(c) 𝜔(𝑣, 𝑢) = 0 for all 𝑣 ∈𝑉 implies that 𝑢 = 0.

Definition 1.2.11 (The type Cℓ Lie algebra). Let dim𝑉 = 2ℓ , and let𝑉 be en-
dowed with a symplectic form 𝜔.

We define Cℓ to be the symplectic algebra 𝔰𝔭(𝑉 ):

Cℓ ≔ 𝔰𝔭(𝑉 ) ≔ 𝔬𝜔 (𝑉 ).

In matrix form, we define

Cℓ ≔ 𝔰𝔭2ℓ (k) ≔
{
𝑥 ∈ 𝔤𝔩2ℓ (k) : 𝐽 𝑥 + 𝑥⊤ 𝐽 = 0

}
where

𝐽 =

(
0 𝐼ℓ
−𝐼ℓ 0

)
is the standard symplectic form on k2ℓ .
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1.2.5 Type D: the even-dimensional orthogonal algebra

Definition 1.2.12 (The type Dℓ Lie algebra). Let dim𝑉 = 2ℓ + 1, and let𝑉 be
endowed with a symmetric nondegenerate form 𝜔.

We define Dℓ to be the orthogonal algebra 𝔬(𝑉 ):

Dℓ ≔ 𝔬(𝑉 ) ≔ 𝔬𝜔 (𝑉 ).

1.3 Lie algebras from algebras
Definition 1.3.1 (Algebras over a field). Let k be a field. An algebra over k, or a
k-algebra is a k-vector space equipped with a bilinear product.

We will use qualifiers like associative and unital to indicate that this product is
associative and has unit respectively.

Put another way, a unital associative algebra over a field is

• a vector space with a compatible ring structure, (vector space + bilinear product)

• or a ring with a compatible vector space structure. (ring + bilinear scaling map)

For example,Mat𝑛(k) is a unital associative algebra over k.
However, we don’t in general expect algebras to have unit or to be associative—R3

with the cross product is neither unital nor associative. Hence, the following is clear:

Proposition 1.3.2. Lie algebras are algebras, with the product given by the Lie
bracket.

To go along with this definition, we have notion of a homomorphism of algebras.

Definition 1.3.3. An algebra homomorphism 𝑓 : 𝒜 → ℬ between two alge-
bras𝒜 andℬ is a vector space homomorphism that respects the product, i.e

𝑓 (𝑥𝑦) = 𝑓 (𝑥) 𝑓 (𝑦)

for all 𝑥, 𝑦 ∈ 𝒜.
We say that an algebra homomorphism is an algebra isomorphism if it is also

a vector space isomorphism.

For example, the determinant is an algebra homomorphism fromMat𝑛(k) to k.
k-algebras canbe turned intoLie algebras bydefining the bracket

[
𝑥𝑦

]
≔ 𝑥𝑦−𝑦𝑥.
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Definition 1.3.4. Let 𝒜 be a k-algebra. Then Lie[𝒜] is defined to be the Lie
algebra whose underlying vector space is𝒜 and whose bracket is given by[

𝑥𝑦
]
≔ 𝑥𝑦 − 𝑦𝑥

for all 𝑥, 𝑦 ∈ 𝒜.

We can check the following nice fact:

Proposition 1.3.5. Let 𝒜 and ℬ be two k-algebras, and let 𝜙 : 𝒜 → ℬ be an
algebra homomorphism.

Then 𝜙 is also a Lie algebra homomorphism (see Definition 2.2.1) between
Lie[𝒜] and Lie[ℬ].

Proof.

𝜙
( [
𝑥𝑦

] )
= 𝜙(𝑥𝑦 − 𝑦𝑥)

= 𝜙(𝑥𝑦) − 𝜙(𝑦𝑥)
= 𝜙(𝑥)𝜙(𝑦) − 𝜙(𝑦)𝜙(𝑥)
=

[
𝜙(𝑥)𝜙(𝑦)

]
.

□

Hence Lie[−] is actually functorial, with mapping of arrows given by the identity
map.

What happens when we consider Lie[𝔤], where 𝔤 is already a Lie algebra?
Let the new bracket of Lie[𝔤] be denoted by ⟦−, −⟧. Then�

𝑥𝑦
�
=

[
𝑥𝑦

]
−

[
𝑦𝑥

]
=

[
𝑥𝑦

]
+

[
𝑥𝑦

]
= 2

[
𝑥𝑦

]
for all 𝑥, 𝑦 ∈ 𝔤.

Then ⟦−, −⟧ = 2[−, −]. This fact actually characterizes Lie algebras.

Proposition 1.3.6. Let𝒜 be a k-algebra with product ∗. If Lie[𝒜] has product
2∗, then𝒜 is a Lie algebra with bracket given by

[
𝑥𝑦

]
= 𝑥 ∗ 𝑦.

Proof. The product is bilinear by definition, so we have (L1).
Next, we check (L2):

𝑥 ∗ 𝑥 =
2(𝑥 ∗ 𝑥)

2
=

[𝑥𝑥]
2

= 0.
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And finally, in the exact same way, we check the Jacobi identity, (L3):

𝑥 ∗ (𝑦 ∗ 𝑧) + 𝑦 ∗ (𝑧 ∗ 𝑥) + 𝑧 ∗ (𝑥 ∗ 𝑦) =
[
𝑥

[
𝑦𝑧

] ]
+

[
𝑦 [𝑥𝑧]

]
+

[
𝑧
[
𝑥𝑦

] ]
4

= 0.

□

1.4 Derivations, the adjoint representation

Definition 1.4.1. Let 𝒜 be a k-algebra. A derivation of 𝒜 is a linear map d :
𝒜 → 𝒜 which satisfies the Leibniz rule:

d(𝑥𝑦) = 𝑥 (d𝑦) + (d𝑥)𝑦.

The collection of all derivations of𝒜 is denotedDer𝒜.

Derivations play nicely with the vector space structure of End𝒜 as well as with the
bracket inherited from 𝔤𝔩(𝒜).

Proposition 1.4.2. Let 𝒜 be a k-algebra. Then Der𝒜 is a subspace of End𝒜.
Moreover, it is a subalgebra of 𝔤𝔩(𝒜)

Proof. If d and d′ are two derivations, then

(𝑎d + 𝑏d′)(𝑥𝑦) = (𝑎d)(𝑥𝑦) + (𝑏d′) (𝑥𝑦)
= 𝑥 (𝑎d𝑦) + (𝑎d𝑥)𝑦 + 𝑥 (𝑏d′𝑦) + (𝑏d′𝑥)𝑦

= 𝑥
(
𝑎d𝑦 + 𝑏d′𝑦

)
+

(
𝑎d𝑥 + 𝑏d′𝑥

)
𝑦

= 𝑥 (𝑎d + 𝑏d′)(𝑦) + (𝑎d + 𝑏d′) (𝑥)𝑦.

Hence 𝑎d + 𝑏d′ ∈ Der𝒜, soDer𝒜 is a subspace of End𝒜.
Moreover,

[dd′] (𝑥𝑦)
= (dd′ − d′d) (𝑥𝑦)
= (dd′)(𝑥𝑦) − (d′d) (𝑥𝑦)

= d
(
𝑥 (d′𝑦) + (d′𝑥)𝑦

)
− d′

(
𝑥 (d𝑦) + (d𝑥)𝑦

)
= d

(
𝑥 (d′𝑦)

)
+ d

(
(d′𝑥)𝑦

)
− d′

(
𝑥 (d𝑦)

)
− d′

(
(d𝑥)𝑦

)
12
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= 𝑥dd′𝑦 + d𝑥d′𝑦 + d′𝑥d𝑦 + dd′𝑥𝑦 − 𝑥d′d𝑦 − d′𝑥d𝑦 − d𝑥d′𝑦 − d′d𝑥𝑦
= 𝑥dd′𝑦 + dd′𝑥𝑦 − 𝑥d′d𝑦 − d′d𝑥𝑦

= 𝑥
(
dd′𝑦 − d′d𝑦

)
+

(
dd′𝑥 − d′d𝑥

)
𝑦

= 𝑥
(
(dd′ − d′d)𝑦

)
+

(
(dd′ − d′d)𝑥

)
𝑦

= 𝑥
(
[dd′] 𝑦

)
+

(
[dd′] 𝑥

)
𝑦.

SoDer𝒜 is a subalgebra of 𝔤𝔩(𝒜). □

We have a special representation of any Lie algebra, which is given by its action on
itself.

Definition 1.4.3. The adjoint representation of a Lie algebra 𝔤 is the mapping

ad𝔤 : 𝔤 → Der𝔤
𝑥 ↦→ ad𝔤 𝑥

where ad𝔤 𝑥 is defined to be the linear map

ad𝔤 𝑥 : 𝔤 → 𝔤

𝑦 ↦→
[
𝑥𝑦

]
.

Wewill write ad 𝑥 for ad𝔤 𝑥 unless there is any ambiguity.
As a set, we define ad𝔤 ≔ ad𝔤 (𝔤) ⊆ 𝔤𝔩(𝔤).

Proposition 1.4.4. ad 𝑥 is a derivation.

Proof. We start with the Jacobi identity (L3)[
𝑥

[
𝑦𝑧

] ]
+

[
𝑦 [𝑧𝑥]

]
+

[
𝑧
[
𝑥𝑦

] ]
= 0,

which, using the anticommutation relations
[
𝑦 [𝑧𝑥]

]
= −

[
𝑦 [𝑥𝑧]

]
and

[
𝑧
[
𝑥𝑦

] ]
=

−
[ [
𝑥𝑦

]
𝑧
]
, is equivalent to[

𝑥
[
𝑦𝑧

] ]
=

[
𝑦 [𝑥𝑧]

]
+

[ [
𝑥𝑦

]
𝑧
]
.

But this is saying that

ad 𝑥.
[
𝑦𝑧

]
=

[
𝑦, ad 𝑥.𝑧

]
+

[
ad 𝑥.𝑦, 𝑧

]
which is exactly the defining identity for derivations. □

13



Lie algebras Jasper Ty

1.5 Abstract Lie algebras
Definition 1.5.1. Let 𝔤 be a Lie algebra, and fix some basis {𝑥1, . . . , 𝑥𝑛} of 𝔤. We
define 𝔤’s structure constants 𝑎𝑘𝑖𝑗 relative to this basis to be the basis coefficients
of the Lie brackets of basis elements— the numbers such that[

𝑥𝑖 𝑥𝑗
]
=

𝑛∑
𝑘=1

𝑎𝑘𝑖𝑗 𝑥𝑘 .

Definition 1.5.2. An abelian Lie algebra 𝔤 is a Lie algebra with trivial bracket—[
𝑥𝑦

]
= 0 for all 𝑥, 𝑦 ∈ 𝔤.

Proposition 1.5.3. Let𝑉 be a vector space with basis 𝑥1, . . . , 𝑥𝑛, and let 𝑎𝑘𝑖𝑗 be an
array of structure coefficients. Then, the bracket definedby 𝑎𝑘𝑖𝑗 gives𝑉 a Lie algebra
structure if and only if

𝑎𝑘𝑖𝑖 = 0
𝑎𝑘𝑖𝑗 + 𝑎𝑘𝑗 𝑖 = 0∑

𝑘 𝑎
𝑘
𝑖𝑗 𝑎

𝑚
𝑘𝑙
+ 𝑎𝑘

𝑗 𝑙
𝑎𝑚
𝑘𝑖
+ 𝑎𝑘

𝑙
𝑎𝑚
𝑘𝑖𝑗

= 0

for any values of 𝑖, 𝑗 , 𝑘, 𝑙, 𝑚.

We will classify all the Lie algebras of dimensions 1 and 2.

Proposition 1.5.4. There are only two Lie algebras of dimension two up to iso-
morphism:

(a) The abelian two-dimensonal Lie algebra,

(b) and the Lie algebra with basis (𝑥, 𝑦) and product [𝑥, 𝑦] = 𝑥.

Proof. If 𝔤 is nonabelian, then
[
𝑥𝑦

]
= 𝑎𝑥 + 𝑏𝑦, where at least one of 𝑎, 𝑏 is nonzero.

Without loss of generality, let 𝑎 be nonzero. Then[ [
𝑥𝑦

]
𝑦
]
=

[
𝑎𝑥 + 𝑏𝑦, 𝑦

]
= 𝑎

[
𝑥𝑦

]
.

Now put 𝑢 =
[
𝑥𝑦

]
and 𝑣 = 𝑎−1𝑦. Then

[𝑢𝑣] =
[ [
𝑥𝑦

]
, (𝑎−1𝑦)

]
=

[
𝑥𝑦

]
= 𝑢.

□

14
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2 Ideals and homomorphisms
2.1 Ideals

Definition 2.1.1. A subspace 𝔦 of a Lie algebra 𝔤 is called an ideal of 𝔤 if
[
𝑥𝑦

]
∈ 𝔦

for all 𝑥 ∈ 𝔤 and 𝑦 ∈ 𝔦.

Convention 2.1.2. In accordance with group theoretic notation, we write 𝔥 ≤ 𝔤
whenever 𝔥 is a Lie subalgebra of 𝔤, and 𝔥 ⊴ 𝔤 whenever 𝔥 is an ideal of 𝔤.

The sum and the bracket of the ideals 𝔦, 𝔧 are defined in the obvious way:

𝔦 + 𝔧 ≔
{
𝑥 + 𝑦 : 𝑥 ∈ 𝔦, 𝑦 ∈ 𝔧

}
, [𝔦𝔧] ≔

{
𝑟∑
𝑖=0

𝑐𝑖
[
𝑥𝑖𝑦𝑖

]
: 𝑐𝑖 ∈ k, 𝑥𝑖 ∈ 𝔦, 𝑦𝑖 ∈ 𝔧

}
.

Theorem 2.1.3. If 𝔞 and 𝔟 are ideals of a Lie algebra 𝔤, then so are 𝔞 + 𝔟, 𝔞 ∩ 𝔟 and
[𝔞𝔟].

Proof. These are all easy to show.

(𝔞 + 𝔟) Let 𝑎 + 𝑏 ∈ 𝔞 + 𝔟 and 𝑔 ∈ 𝔤. Then[
𝑔, 𝑎 + 𝑏

]
=

[
𝑔𝑎

]︸︷︷︸
∈𝔞

+
[
𝑔𝑏

]︸︷︷︸
∈𝔟

.

So
[
𝑔, 𝑎 + 𝑏

]
∈ 𝔞 + 𝔟.

(𝔞 ∩ 𝔟) Let 𝑥 ∈ 𝔞 ∩ 𝔟 and 𝑔 ∈ 𝔤. We have that
[
𝑔𝑥

]
∈ 𝔞 and

[
𝑔𝑥

]
∈ 𝔟 since 𝑥 ∈ 𝔞

and 𝑥 ∈ 𝔟 respectively. So
[
𝑔𝑥

]
∈ 𝔞 ∩ 𝔟.

([𝔞𝔟]) Let 𝑎 ∈ 𝔞, 𝑏 ∈ 𝔟, and 𝑔 ∈ 𝔤. We have that [𝑎𝑏] ∈ [𝔞𝔟], and by the Jacobi
identity, [

𝑔 [𝑎𝑏]
]
=

[
𝑎

[
𝑔𝑏

] ]
+

[ [
𝑔𝑎

]
𝑏
]
,

hence
[
𝑔 [𝑎𝑏]

]
∈ [𝔞𝔟]. Linearity extends this to the general case.

□

As a nice consequence, we have effectively shown the following:

15
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Proposition 2.1.4. Ideals of a Lie algebra form a lattice, with order given by con-
tainment and whose join and meet correspond to sums and intersections of ideals
respectively.

Proof. Ideals of 𝔤 are subspaces of 𝔤. By the previous theorem, it’s clear that the set of
ideals of 𝔤 are a sublattice of the set of subspaces of 𝔤. □

Definition 2.1.5. The quotient of a Lie algebra 𝔤 by an ideal 𝔦, denoted 𝔤/𝔦,
is defined to be the quotient of 𝔤 as a vector space by 𝔦 as a subspace, equipped with
the product [

𝑥 + 𝔦, 𝑦 + 𝔦
]
≔

[
𝑥𝑦

]
+ 𝔦.

Proposition 2.1.6. 𝔤/𝔦 is a Lie algebra.

Proof. These are all easy to check.[
𝑎𝑥 + 𝑏𝑦 + 𝔦, 𝑧 + 𝔦

]
=

( [
𝑎𝑥 + 𝑏𝑦, 𝑧

] )
+ 𝔦

=
(
𝑎 [𝑥, 𝑧] + 𝑏

[
𝑦, 𝑧

] )
+ 𝔦

=
(
𝑎 [𝑥, 𝑧] + 𝔦

)
+

(
𝑏
[
𝑦, 𝑧

]
+ 𝔦

)
= 𝑎 [𝑥 + 𝔦, 𝑧 + 𝔦] + 𝑏

[
𝑦 + 𝔦, 𝑧 + 𝔦

]
.

[𝑥 + 𝔦, 𝑥 + 𝔦] = [𝑥𝑥] + 𝔦 = 0 + 𝔦

□

2.2 Homomorphisms
There is a natural definition of a Lie algebra homomorphism— it’s a map that respects
brackets.

Definition 2.2.1. Let 𝔤 and 𝔥 be two Lie algebras. We say that a map 𝜙 : 𝔤 → 𝔥 is
a Lie algebra homomorphism if it is a linear map for which

𝜙
( [
𝑥𝑦

] )
=

[
𝜙(𝑥)𝜙(𝑦)

]
for all 𝑥, 𝑦 ∈ 𝔤. A Lie algebra isomorphism is a Lie algebra homomorphism
that is also an isomorphism of vector spaces.

16
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Definition 2.2.2. A representation of a Lie algebra 𝔤 is a Lie algebra homomor-
phism 𝔤 → 𝔤𝔩(𝑉 ) where𝑉 is some vector space.

2.3 Isomorphism theorems

Theorem 2.3.1 (Lie algebra isomorphism theorems). Let 𝔤 and 𝔥 be Lie algerbas.

(a) If 𝜙 : 𝔤 → 𝔥 is a homomorphism, then 𝔤/ker 𝜙 ≃ im 𝜙. If 𝔦 ⊆ ker 𝜙 is an
ideal of 𝔤, there exists a unique homomorphism 𝜙 : 𝔤/𝔦 → 𝔥 that makes the
following diagram commute:

𝔤 𝔥

𝔤/𝔦

𝜙

𝜋
𝜙

(b) If 𝔞 and 𝔟 are ideals of 𝔤 such that 𝔟 ⊆ 𝔞, then 𝔞/𝔟 is an ideal of 𝔤/𝔟 and
there is a natural isomorphism

(𝔤/𝔟)/(𝔞/𝔟) ≃ 𝔤/𝔞.

(c) If 𝔞, 𝔟 are ideals of 𝔤, there is a natural isomorphism

(𝔞 + 𝔟)/𝔟 ≃ 𝔞/(𝔞 ∩ 𝔟).

Proof. (a) The map

𝜙 : 𝔤/ker 𝜙 → im 𝜙

𝑥 + ker 𝜙 ↦→ 𝜙(𝑥)

is the desired isomorphism 𝔤/ker 𝜙 ≃ im 𝜙. We verify that it is well defined: let
𝑥 +ker 𝜙 = 𝑥′ +ker 𝜙. Then there exists 𝑘, 𝑘′ ∈ ker 𝜙 such that 𝑥 + 𝑘 = 𝑥′ + 𝑘′,
and we have that

𝜙(𝑥) = 𝜙(𝑥 + 𝑘) = 𝜙(𝑥 + 𝑘′) = 𝜙(𝑥′),

so 𝜙 is a well-defined function on the cosets in 𝔤/ker 𝜙.

17
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Next, we check that it respects brackets:

𝜙
( [
𝑥 + ker 𝜙, 𝑦 + ker 𝜙

] )
= 𝜙

( [
𝑥𝑦

]
+ ker 𝜙

)
= 𝜙

( [
𝑥𝑦

] )
=

[
𝜙(𝑥)𝜙(𝑦)

]
=

[
𝜙
(
𝑥 + ker 𝜙

)
, 𝜙

(
𝑦 + ker 𝜙

)]
.

Then, it is a homomorphism. To show that it is an isomorphism, we note that it
has a trival kernel, trivially:

ker 𝜙 = {𝑥 + ker 𝜙 : 𝑥 + ker 𝜙 = ker 𝜙} = {0 + ker 𝜙}.

Now, let 𝔦 be an ideal of 𝔤 contained in ker 𝜙. We define in a similar way

𝜙 : 𝔤/𝔦 → im 𝜙

𝑥 + 𝔦 ↦→ 𝜙(𝑥),

and via a similar argument as above, this map is well-defined. It is moreover clear
that 𝜙 ◦ 𝜋 = 𝜙 and that it is the only such homomorphism that has these prop-
erties.

(b) Let 𝔞 and 𝔟 be ideals of 𝔤 such that 𝔟 ⊆ 𝔞. We define the map

𝜙 : 𝔤/𝔟 → 𝔤/𝔞
𝑥 + 𝔟 ↦→ 𝑥 + 𝔞.

This map is surjective. The kernel of this map is all the cosets 𝑎 + 𝔟, namely the
ideal 𝔞/𝔟. Then, by (a),

(𝔤/𝔟)(𝔞/𝔟) = (𝔤/𝔟)/ker 𝜙 ≃ im 𝜙 = 𝔤/𝔞.

(c) Let 𝔞 and 𝔟 be ideals of 𝔤. Define the map

𝜙 : 𝔞 → (𝔞 + 𝔟)/(𝔟)
𝑎 ↦→ 𝑎 + 𝔟.

This map is surjective, as, if (𝑎 + 𝑏) + 𝔟 ∈ (𝔞 + 𝔟)/(𝔟), then

𝜙(𝑎) = 𝑎 + 𝔟 = 𝑎 + (𝑏 + 𝔟) = (𝑎 + 𝑏) + 𝔟.

18
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Moreover, since
ker 𝜙 = 𝔞 ∩ 𝔟

we have that, by (a) again,

(𝔞 + 𝔟)/𝔟 = im 𝜙 ≃ 𝔞/ker 𝜙 = 𝔞/(𝔞 ∩ 𝔟).

□

We have another, useful, isomorphism theorem, which is important enough to
state on its own:

Theorem 2.3.2 (Correspondence theorem). Let 𝔦 ⊴ 𝔤. Then there is an order
isomorphism

subalgebras of 𝔤 containing 𝔦 ↔ subalgebras of 𝔤/𝔦
𝔥 ↔ 𝔥/𝔦.

Proof. Similarly to Proposition 2.3.2, this is true on the level of a Lie algebra’s vector
space structure. Hence, it proves the bijection. TODO: details! □

Theorem 2.3.3. The adjoint representation ad : 𝔤 → 𝔤𝔩(𝔤) is a representation of
𝔤.

Proof. ad is evidently linear. Next, we just check that it is a homomorphism:[
ad 𝑥, ad 𝑦

]
.𝑧 =

(
ad 𝑥 ad 𝑦 − ad 𝑦 ad 𝑥

)
.𝑧

=
(
ad 𝑥 ad 𝑦.𝑧

)
−

(
ad 𝑦 ad 𝑥.𝑧

)
=

(
ad 𝑥.

[
𝑦𝑧

] )
−

(
ad 𝑦. [𝑥𝑧]

)
=

[
𝑥

[
𝑦𝑧

] ]
−

[
𝑦 [𝑥𝑧]

]
=

[
𝑥

[
𝑦𝑧

] ]
+

[
𝑦 [𝑧𝑥]

]
=

[ [
𝑥𝑦

]
𝑧
]

= ad
[
𝑥𝑦

]
.𝑧.

□
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Corollary 2.3.4. Any simple Lie algebra is isomorphic to a linear Lie algebra.

Proof. Let 𝔤 be a Lie algebra. We have that

ker ad =
{
𝑥 ∈ 𝔤 : ad 𝑥 = 0

}
=

{
𝑥 ∈ 𝔤 :

[
𝑥𝑦

]
= 0 for all 𝑦 ∈ 𝔤

}
= 𝑍 (𝔤).

Hence, if𝔤 is simple, i.e if 𝑍 (𝔤) = 0, then adhas a trivial kernel, so it is an isomorphism.
□

3 Automorphisms
Definition 3.0.1. A automorphism of a Lie algebra 𝔤 is an isomorphism 𝔤 → 𝔤.

Proposition 3.0.2. Let𝑉 be a vector space and let 𝑔 ∈ GL(𝑉 ). Then the map

𝑥 ↦→ 𝑔𝑥 𝑔−1

is an automorphism of 𝔤𝔩(𝑉 ).

Proof. The aforementioned map is a vector space isomorphism, with explicit inverse

𝑥 ↦→ 𝑔−1𝑥 𝑔

and it is a homomorphism, as

𝑔
[
𝑥𝑦

]
𝑔−1 = 𝑔

(
𝑥𝑦 − 𝑦𝑥

)
𝑔−1

=
(
𝑔𝑥𝑦 𝑔−1

)
−

(
𝑔𝑦𝑥 𝑔−1

)
=

(
𝑔𝑥 𝑔−1 𝑔𝑦 𝑔−1

)
−

(
𝑔𝑦 𝑔−1 𝑔𝑥 𝑔−1

)
=

[
𝑔𝑥 𝑔−1, 𝑔𝑦 𝑔−1

]
.

□

4 Solvable and nilpotent Lie algebras
4.1 The derived series, solvability
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Definition 4.1.1. The derived series of a Lie algebra 𝔤 is a sequence of ideals
𝔤 (0) , 𝔤 (1) , . . . defined {

𝔤 (0) ≔ 𝔤

𝔤 (𝑖 ) ≔
[
𝔤 (𝑖−1)𝔤 (𝑖−1)

] .

In other words, 𝔤 (𝑖 ) is all those elements of 𝔤 which can be written as linear combina-
tions of 𝑖 “full binary trees” of brackets in 𝔤.

Definition 4.1.2. A Lie algebra 𝔤 is said to be solvable if 𝔤 (𝑛) = 0 for some 𝑛.

For example, abelian Lie algebras are solvable, whereas simple Lie algebras are never
solvable.

In group theory, solvable groups are precisely those which can be constructed with
abelian extensions— solvable Lie algebras are analogous.

Proposition 4.1.3. A Lie algebra 𝔤 is solvable if and only if there exists a filtration
of ideals

𝔤 = 𝔤0 ▷ 𝔤1,▷ · · · ▷ 𝔤𝑘−1 ▷ 𝔤𝑘 = {0}

such that 𝔤𝑖/𝔤𝑖+1 is abelian.

Proof. Since 𝔥/[𝔥𝔥] is always abelian for any Lie algebra 𝔥, it’s clear that if 𝔤 is solvable
it suffices to take its derived series as the filtration, as

𝔤 (𝑖 )/𝔤 (𝑖+1) = 𝔤 (𝑖 )
/ [

𝔤 (𝑖 )𝔤 (𝑖 )
]
.

On the flip side, if we have such a descending sequence of ideals 𝔤0, . . . , 𝔤𝑘 , it must be
that [𝔤𝑖𝔤𝑖] ⊆ 𝔤𝑖+1. Let

[
𝑥𝑦

]
∈ [𝔤𝑖𝔤𝑖]. Then[

𝑥𝑦
]
+ 𝔤𝑖+1 =

[
𝑥 + 𝔤𝑖 , 𝑦 + 𝔤𝑖

]
= 𝔤𝑖+1.

Then, by an easy induction 𝔤 (𝑖 ) ⊆ 𝔤𝑖 , which proves that the derived series terminates,
since 𝔤𝑖 does. □

Proposition 4.1.4. The Lie algebra of upper triangular matrices 𝔱𝑛(k) is solvable.

Proof. We use the following definition of an upper triangular matrix:

(𝑎𝑖𝑗 ) is upper triangular ⇐⇒ 𝑎𝑖𝑗 = 0 if 𝑗 − 𝑖 < 0.
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Let (𝑎𝑖𝑗 ) and (𝑏𝑖𝑗 ) be two upper triangular matrices, and let 𝑗 − 𝑖 < 1, then

(𝑎𝑏 − 𝑏𝑎)𝑖𝑗 = (𝑎𝑏)𝑖𝑗 − (𝑏𝑎)𝑖𝑗

=
𝑛∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗 −
𝑛∑
𝑘=1

𝑏𝑖𝑘𝑎𝑘𝑗

= ©«
𝑖−1∑
𝑘=1

𝑎𝑖𝑘𝑏𝑘𝑗 +
𝑗∑
𝑘=𝑖

𝑎𝑖𝑘𝑏𝑘𝑗 +
𝑛∑

𝑘=𝑗+1
𝑎𝑖𝑘𝑏𝑘𝑗

ª®¬ −
𝑛∑
𝑘=1

𝑏𝑖𝑘𝑎𝑘𝑗

= ©«
𝑖−1∑
𝑘=1

0 · 𝑏𝑘𝑗 +
𝑗∑
𝑘=𝑖

𝑎𝑖𝑘𝑏𝑘𝑗 +
𝑛∑

𝑘=𝑗+1
𝑎𝑖𝑘 · 0

ª®¬ −
𝑛∑
𝑘=1

𝑏𝑖𝑘𝑎𝑘𝑗

=
𝑗∑
𝑘=𝑖

𝑎𝑖𝑘𝑏𝑘𝑗 −
𝑛∑
𝑘=1

𝑏𝑖𝑘𝑎𝑘𝑗

=
𝑗∑
𝑘=𝑖

𝑎𝑖𝑘𝑏𝑘𝑗 −
𝑗∑
𝑘=𝑖

𝑏𝑖𝑘𝑎𝑘𝑗

=
𝑗∑
𝑘=𝑖

(𝑎𝑖𝑘𝑏𝑘𝑗 − 𝑏𝑖𝑘𝑎𝑘𝑗 )

=

{
0 if 𝑗 < 𝑖

𝑎𝑗𝑗𝑏𝑗𝑗 − 𝑏𝑗𝑗 𝑎𝑗𝑗 if 𝑗 = 𝑖

= 0.

Hence, (𝑎𝑏 − 𝑏𝑎) is strictly upper triangular, so [𝑎𝑏] ∈ 𝔫. Then 𝔱 (1) = [𝔱𝔱] ⊆ 𝔫.
Now suppose that, for some 𝑙 ≥ 0,

(𝑎𝑖𝑗 ) ∈ 𝔫 (𝑙 ) =⇒ 𝑎𝑖𝑗 = 0 if 𝑗 − 𝑖 < 𝑚.

Then, we can do a similar, in fact easier calculation to show that if (𝑎𝑖𝑗 ), (𝑏𝑖𝑗 ) ∈ 𝔱 (𝑚)

and 𝑗 − 𝑖 < 2𝑚.

(𝑎𝑏 − 𝑏𝑎)𝑖𝑗 =
𝑗−𝑚∑
𝑘=𝑖+𝑚

(𝑎𝑖𝑘𝑏𝑘𝑗 − 𝑏𝑖𝑘𝑎𝑘𝑗 ) = 0.

Hence, we have shown that

(𝑎𝑖𝑗 ) ∈ 𝔱 (𝑙+1) =⇒ 𝑎𝑖𝑗 = 0 if 𝑗 − 𝑖 < 2𝑚.
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Combined with our initial conditions, we have shown in general that

(𝑎𝑖𝑗 ) ∈ 𝔱 (𝑙 ) =⇒ 𝑎𝑖𝑗 = 0 if 𝑗 − 𝑖 < 2𝑙 .

Clearly, if 𝑙 is large enough, (𝑎𝑖𝑗 ) is forced to be the zeromatrix. Hence 𝔫 is solvable, as
𝔫 (𝑙 ) = 0 for some positive integer 𝑙. Then 𝔱 is also solvable, as 𝔱 (𝑙+1) ⊆ 𝔫 (𝑙 ) = 0. □

Theorem 4.1.5. Let 𝔤 be a Lie algebra.

(a) If 𝔤 is solvable, then so are all subalgebras and homomorphic images of 𝔤.

(b) If 𝔦 is a solvable ideal of 𝔤 such that 𝔤/𝔦 is also solvable, then 𝔤 is solvable.

(c) If 𝔦, 𝔧 are solvable ideals of 𝔤, then so is 𝔦 + 𝔧.

Proof. The first statement of (a) follows if we show that

𝔥 (𝑖 ) ⊆ 𝔤 (𝑖 )

for any subalgebra 𝔥 of 𝔤—this is an easy induction. Similarly, the second statement of
(a) follows from

(𝜙𝔤) (𝑖 ) = 𝜙
(
𝔤 (𝑖 )

)
for any homomorphism 𝜙. This is another easy induction.

For (b), we stack together 𝔤/𝔦 and 𝔦’s solvability— the former being solvable means
that𝔤 (𝑛) ⊆ 𝔦 for large enough 𝑛, but thatmeans that𝔤 (𝑖 ) is a subalgebra of 𝔦, for which
𝔦 (𝑚) = 0 for large enough𝑚, so we can “push in” 𝔤 further, namely

𝔤 (𝑛+𝑚) =
(
𝔤 (𝑛)

) (𝑚)
⊆ 𝔦 (𝑚) = 0.

□

The solvability of a Lie algebra measures how “structured” its nonabelianness is.

Definition 4.1.6. The radical rad𝔤 of a Lie algebra 𝔤 is defined to be themaximal
solvable ideal of 𝔤.

Definition 4.1.7. A Lie algebra 𝔤 is said to be semisimple if rad𝔤 = 0.

4.2 The descending central series, nilpotency

23



Lie algebras Jasper Ty

Definition 4.2.1. Thedescending central seriesof aLie algebra𝔤 is a sequence
of ideals 𝔤0, 𝔤1, . . . defined to be{

𝔤0 ≔ 𝔤

𝔤𝑖 ≔
[
𝔤𝔤𝑖−1

] .

Definition 4.2.2. A Lie algebra 𝔤 is said to be nilpotent if 𝔤𝑛 = 0 for some 𝑛.

Proposition 4.2.3. All nilpotent Lie algebras are solvable.

Definition 4.2.4. Let 𝔤 be a Lie algebra. We say that 𝑥 ∈ 𝔤 is ad-nilpotent if
(ad 𝑥)𝑛 = 0 for some 𝑛.

Theorem 4.2.5. Let 𝔤 be a Lie algebra.

(a) If 𝔤 is nilpotent, then so are all subalgebras and homomorphic images of 𝔤.

(b) If 𝔤/𝑍 (𝔤) is nilpotent, then so is 𝔤.

(c) If 𝔤 is nilpotent and nonzero, then 𝑍 (𝔤) is nonzero.

4.3 Engel’s theorem
Wewill prove Engel’s theorem.

Theorem 4.3.1 (Engel). Let 𝔤 be a Lie algebra. Then the following are equivalent:

(i) 𝔤 is nilpotent.

(ii) All the elments of 𝔤 are ad-nilpotent.

We will prove the following equivalent theorem:

Theorem 4.3.2. Let 𝔤 be a subalgebra of 𝔤𝔩(𝑉 ), where𝑉 has positive dimension.
If 𝔤 consists only of nilpotent transformations, then there exists a nonzero vector
𝑣 ∈𝑉 so that 𝔤.𝑣 = 0.

Proof. We induct on dim𝔤.
The dim𝔤 = 0 case is trivial— 𝔤 will only contain the zero transformation.
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The dim𝔤 = 1 case is also easy. Let 𝑥 ∈ 𝔤 be nonzero and nilpotent. Then we can
find a nonzero vector 𝑣 ∈𝑉 so that 𝑥.𝑣 = 0, and so 𝔤.𝑣 = k𝑥.𝑣 = 0.

Now suppposedim𝔤 > 1. Let 𝔥 be a proper subalgebra of𝔤 of positive dimension.
Then,

ad𝔤/𝔥 ≔
{
ad𝔤/𝔥 (𝑥 + 𝔥) : 𝑥 ∈ 𝔤

}
is a Lie algebra— it is the homomorphic image of 𝔤 under the composition

𝔤 𝔤/𝔥 ad𝔤/𝔥.𝜋 ad

Moreover,
dim𝔤 > dim𝔤/𝔥 ≥ dim ad𝔤/𝔥,

as 𝔥 has positive dimension. By the inductive hypothesis, wemay find a nonzero vector
𝑥 + 𝔥 ∈ 𝔤/𝔥 such that

ad𝔤/𝔥.(𝑥 + 𝔥) = 0 + 𝔥 = 𝔥.

This means that

[ℎ𝑥] + 𝔥 = [ℎ + 𝔥, 𝑥 + 𝔥]
= ad𝔤/𝔥 (ℎ + 𝔥).(𝑥 + 𝔥)
= 𝔥

for all ℎ ∈ 𝔥, so 𝑥 ∈ 𝑁𝔤 (𝔥).
But 𝑥 + 𝔥 being nonzero in 𝔤/𝔥means exactly that 𝑥 ∉ 𝔥, so 𝔥 ⊊ 𝑁𝔤 (𝔥). We will

use this fact to produce a nontrivial maximal ideal of 𝔤.
We are always able to find a proper subalgebra of positive dimension— choose the

span of any single element in 𝔤. Then, there must exist maximal proper subalgebras.
Let 𝔥 be maximal now. Then we have that 𝑁𝔤 (𝔥) = 𝔤, as otherwise 𝑁𝔤 (𝔥) is a larger
proper subalgebra of 𝔤.

Hence, 𝔥 is a proper ideal of 𝔤, so 𝔤/𝔥must contain a one-dimensional subalgebra.
By Theorem 2.3.2, this one-dimensional subalgebra has the form 𝔞/𝔥, where 𝔥 ◁ 𝔞 ≤
𝔤. Now, it must be that 𝔞 = 𝔤, as otherwise 𝔞 is a proper subalgebra of 𝔤 containing 𝔥.
Then 𝔞/𝔥 = 𝔤/𝔥, so 𝔤/𝔥 is one-dimensional. This shows that 𝔥 has codimension one
in 𝔤.

Now, consider the subspace𝑊 = {𝑣 ∈ 𝑉 : 𝔥.𝑣 = 0} of𝑉 . Since 𝔥 is an ideal of
𝔤, 𝔤 stabilizes𝑊— for all 𝑔 ∈ 𝔤, ℎ ∈ 𝔥, and𝑤 ∈𝑊 , we have that

ℎ. 𝑔.𝑤 = ℎ 𝑔.𝑤

=
(
𝑔ℎ −

[
𝑔ℎ

] )
.𝑤
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=
(
𝑔. ℎ.𝑤︸︷︷︸

=0

)
+

( [
ℎ 𝑔

]︸︷︷︸
∈𝔥

.𝑤
)

=
(
𝑔.0

)
+ 0

= 0,

hence 𝔤.𝑊 ⊆𝑊 .
Then, if we pick 𝑔 ∈ 𝔤 and restrict it to𝑊 , we have a nilpotent endomorphism of

𝑊 , hence 𝑔 has an eigenvector 𝑣 in𝑊 .
Then, (𝔥 + k 𝑔).𝑣 = 0, completing the theorem. □

Now, we can prove Engel’s theorem:

Proof of Engel’s theorem. As before, the dim𝔤 = 0 and dim𝔤 = 1 cases are trivial. So,
we induct on dim𝔤.

Let 𝔤 be a Lie algebra whose elements are all ad-nilpotent.
Then ad𝔤 is a subalgebra of 𝔤𝔩(𝔤) consisting of nilpotent transformations, hence

there exists a nonzero vector 𝑥 ∈ 𝔤 such that ad𝔤.𝑥 = 0.
But, from the definition of ad, thismeans that [𝔤𝑥] = 0, hence 𝑥 ∈ 𝑍 (𝔤), so 𝑍 (𝔤)

has positive dimension, and dim𝔤/𝑍 (𝔤) < dim𝔤.
Now,wewant to show that𝔤/𝑍 (𝔤) consists of ad-nilpotent elements. This follows

from the observation that

ad
(
𝑥 + 𝑍 (𝔤)

)
.
(
𝑦 + 𝑍 (𝔤)

)
=

[
𝑥 + 𝑍 (𝔤), 𝑦 + 𝑍 (𝔤)

]
=

[
𝑥𝑦

]
+ 𝑍 (𝔤)

= (ad 𝑥.𝑦) + 𝑍 (𝔤),

hence it easily follows that ad
(
𝑥 + 𝑍 (𝔤)

)
is nilpotent given that ad 𝑥 is nilpotent.

Then, by the induction hypothesis, 𝔤/𝑍 (𝔤) is a nilpotent Lie algebra.
By Theorem, 𝔤 is a nilpotent Lie algebra, completing the proof. □

Corollary 4.3.3. If 𝔤 is a nilpotent subalgebra of 𝔤𝔩(𝑉 ), then there exists a flag in
𝑉 such that 𝔤.𝑉𝑖 ⊆ 𝑉𝑖−1 for all 𝑖.

Namely, there exists a basis of𝑉 for which all thematrices of𝔤 are strictly upper
triangular.

Proof. □
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5 Semisimple Lie algebras
Convention 5.0.1. Let k denote an algebraically closed field of characteristic zero.

5.1 Lie’s theorem
Similar to Engel’s theorem,which concernednilpotent Lie algebras, we haveLie’s the-
orem, which concerns solvable Lie algebras.

Theorem 5.1.1 (Lie’s theorem). Let 𝔤 be a solvable subalgebra of 𝔤𝔩(𝑉 ). Then 𝔤
stabilizes some flag in𝑉 .

In otherwords, relative to somebasis of𝑉 , thematrix representation of all elements
of 𝔤 are upper triangular.

Again, we will prove it by proving an equivalent formulation in terms of the exis-
tence of a common eigenvector.

Theorem 5.1.2. Let 𝔤 be a solvable subalgebra of 𝔤𝔩(𝑉 ). Then there exists 𝑣 ∈ 𝑉
that is an eigenvector for all 𝑥 ∈ 𝔤.

In other words, there exists a linear functional 𝜆 : 𝔤 → k such that

𝑥.𝑣 = 𝜆(𝑥)𝑣

for all 𝑥 ∈ 𝔤.

Proof. Wewill use a similar strategy as with the proof of Engel’s theorem.

Step 1 Locate an ideal 𝔥 of codimension one.
Since 𝔤 is solvable, [𝔤𝔤] < 𝔤, and so 𝔤/[𝔤𝔤] has positive dimension.
Combined with the fact it is abelian, it then has an ideal 𝔥/[𝔤𝔤] ◁ 𝔤/[𝔤𝔤]
of codimension one, which, by the correspondence theorem (2.3.2), gives us an
ideal 𝔥 ◁ 𝔤 of codimension one.

Step 2 Use induction to find a common eigenvector for 𝔥.
Suppose that the theoremwere true for all 𝔥 ≤ 𝔤𝔩(𝑉 ) such that dim 𝔥 < dim𝔤.
Then there exists a linear functional 𝜆 : 𝔥 → k such that

𝑥.𝑣 = 𝜆(𝑥)𝑣.

Now, define the amalgamation of eigenspaces

𝑊 =
{
𝑤 ∈𝑉 : 𝑥.𝑤 = 𝜆(𝑥)𝑤

}
.
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Step 3 Prove that 𝔤 leaves𝑊 invariant.
Let 𝑥 ∈ 𝔤 and𝑤 ∈𝑊 . Then if 𝑥.𝑤 ∈𝑊 , that means that for all 𝑦 ∈ 𝔥

𝑦.𝑥.𝑤 = 𝜆(𝑦) (𝑥.𝑤) = 𝜆(𝑦)𝑥.𝑤.

But also,

𝑦.𝑥.𝑤 = 𝑦𝑥.𝑤

=
(
𝑥𝑦 −

[
𝑥𝑦

] )
.𝑤

=
(
𝑥𝑦.𝑤

)
−

( [
𝑥𝑦

]
.𝑤

)
=

(
𝑥.𝜆(𝑦)𝑤

)
− 𝜆

( [
𝑥𝑦

] )
𝑤

=
(
𝜆(𝑦)𝑥.𝑤

)
− 𝜆

( [
𝑥𝑦

] )
𝑤

Hence
𝜆(𝑦)𝑥.𝑤 =

(
𝜆(𝑦)𝑥.𝑤

)
− 𝜆

( [
𝑥𝑦

] )
𝑤,

so it must be that 𝜆
( [
𝑥𝑦

] )
= 0 if 𝑥.𝑤 ∈𝑊 . We will show this directly.

Let 𝑧 ∈ 𝔥. Define

𝑊𝑖 ≔ span{𝑤, 𝑥.𝑤, . . . , 𝑥 𝑖−1.𝑤},

and let 𝑛 be the smallest integer for which𝑊𝑛 =𝑊𝑛+1. We would like to show
the following

𝑧𝑤 𝑖 .𝑥 ≡𝑊𝑖 𝜆(𝑧) (𝑤 𝑖 .𝑥),

which allows us to immediately conclude that the matrix representation of 𝑧
acting on𝑊𝑛 is upper triangular, with diagonal entries 𝜆(𝑧).
Hence, tr𝑊𝑛 (𝑧) = 𝑛𝜆(𝑧).
Now, put 𝑧 =

[
𝑥𝑦

]
, we immediately see that

tr𝑊𝑛

( [
𝑥𝑦

] )
= 𝑛𝜆

( [
𝑥𝑦

] )
.

However, [
𝑥𝑦

] ���
𝑊𝑛

=
[
𝑥 |𝑊𝑛 , 𝑦 |𝑊𝑛

]
,
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as 𝑥 and 𝑦 both stabilize𝑊𝑛, hence

tr𝑊𝑛

( [
𝑥𝑦

] )
= tr

( [
𝑥 |𝑊𝑛 , 𝑦 |𝑊𝑛

] )
= 0,

being the commutator of two elements of 𝔤𝔩(𝑊𝑛).
Hence

𝑛𝜆
( [
𝑥𝑦

] )
= 0,

which, because chark = 0, implies that 𝜆
( [
𝑥𝑦

] )
= 0.

Hence 𝑦 stabilizes𝑊 .

Step 4 Find an eigenvector in𝑊 for an endomorphism in 𝔤 − 𝔥

Now, write 𝔤 = 𝔥 + k𝑧 for some 𝑧 ∈ 𝔤.
Since 𝑧 stabilizes𝑊 , and since k is algebraically closed, it has an eigenvector 𝑣0
in𝑊 .
But, by definition of𝑊 , 𝑣0 is also an eigenvector for all endomorphisms in 𝔥,
hence we conclude that 𝑣0 is a common eigenvector for all endomorphisms in 𝔤.
This completes the proof of the theorem.

□

5.2 Jordan-Chevalley decomposition

Theorem 5.2.1 (Jordan-Chevalley decomposition). Let 𝑥 ∈ End𝑉 . Then there
exist unique 𝑥𝑠 , 𝑥𝑛 ∈ End𝑉 such that

(a) 𝑥 = 𝑥𝑠 + 𝑥𝑛,

(b) 𝑥𝑠 is semismple, 𝑥𝑛 is nilpotent.

Moreover, 𝑥𝑠 and 𝑥𝑛 are polynomials in 𝑥, so they commute with all endomor-
phisms that commute with 𝑥.

Proof. Let

𝑝𝑥 (𝑡) =
𝑘∏
𝑖=1

(𝑡 − 𝑎𝑖)𝑚𝑖

be the characteristic polynomial of 𝑥. □
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5.3 Cartan’s criterion

Theorem 5.3.1 (Cartan’s criterion). Let 𝔤 be a subalgebra of 𝔤𝔩(𝑉 ). The following
are equivalent

(a) 𝔤 is solvable.

(b) tr(𝑥𝑦) = 0 for all 𝑥 ∈ 𝔤 and 𝑦 ∈ [𝔤𝔤].

5.4 Killing form

Definition 5.4.1. TheKilling form of a Lie algebra 𝔤 is the bilinear form defined
by

(𝑥, 𝑦) ↦→ tr(ad 𝑥, ad 𝑦).

Proposition 5.4.2. A finite dimensional Lie algebra is semisimple if and only if its
Killing form is nondegenerate.

Proof. □

Theorem 5.4.3. The Killing form on 𝔤𝔩𝑛(F) is given by

(𝑥, 𝑦) ↦→ 2𝑛 · tr(𝑥𝑦) − 2 tr(𝑥) tr(𝑦).

Proof. Let 𝑥, 𝑦 ∈ 𝔤𝔩𝑛(F), and put 𝑥 = (𝑥𝑖𝑗 ), 𝑦 = (𝑦𝑖𝑗 ).
Then, by expanding the definition of matrix multiplication, we can see that[

𝑥𝑦
]
𝑖𝑗 = 𝑥𝑖𝑘𝑦𝑘𝑗 − 𝑦𝑖ℓ 𝑥ℓ𝑗 ,

where here we are using the Einstein summation convention.
We can manipulate the right hand side as follows

𝑥𝑖𝑘 𝑦𝑘𝑗︸︷︷︸
=𝛿ℓ𝑗𝑦𝑘ℓ

− 𝑦𝑖ℓ︸︷︷︸
=𝛿𝑖𝑘𝑦𝑘ℓ

𝑥ℓ𝑗

= 𝑥𝑖𝑘 (𝛿ℓ𝑗𝑦𝑘ℓ ) − (𝛿𝑖𝑘𝑦𝑘ℓ )𝑥ℓ𝑗
= 𝑦𝑘ℓ

(
𝑥𝑖𝑘𝛿ℓ𝑗 − 𝛿𝑖𝑘𝑥ℓ𝑗

)
.
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Now define 𝑥𝑘ℓ𝑖𝑗 ≔ 𝑥𝑖𝑘𝛿ℓ𝑗 − 𝛿𝑖𝑘𝑥ℓ𝑗 . Then we have shown that 𝑥𝑘ℓ𝑖𝑗 𝑦𝑘ℓ =
[
𝑥𝑦

]
𝑖𝑗 ,

which is namely the fact 𝑥𝑘ℓ𝑖𝑗 is thematrix representation of ad 𝑥 relative to the standard
basis 𝑒𝑖𝑗 of 𝔤𝔩𝑛(F).

We now wish to know the value of tr(𝑥�̂�). This is given by the contraction

𝑥𝑘ℓ𝑖𝑗 �̂�
𝑖𝑗
𝑘ℓ
,

which we easily compute:

𝑥𝑘ℓ𝑖𝑗 �̂�
𝑖𝑗
𝑘ℓ

=
(
𝑥𝑖𝑘𝛿ℓ𝑗 − 𝛿𝑖𝑘𝑥ℓ𝑗

) (
𝑦𝑘𝑖𝛿𝑗ℓ − 𝛿𝑘𝑖𝑦𝑗ℓ

)
= (𝑥𝑖𝑘𝛿ℓ𝑗 ) (𝑦𝑘𝑖𝛿𝑗ℓ ) + (𝛿𝑖𝑘𝑥ℓ𝑗 )(𝛿𝑘𝑖𝑦𝑗ℓ ) − (𝑥𝑖𝑘𝛿ℓ𝑗 )(𝛿𝑘𝑖𝑦𝑗ℓ ) − (𝛿𝑖𝑘𝑥ℓ𝑗 )(𝑦𝑘𝑖𝛿𝑗ℓ )
= (𝛿𝑗ℓ 𝛿ℓ𝑗 )︸   ︷︷   ︸

=𝛿𝑗𝑗=𝑛

𝑥𝑖𝑘𝑦𝑘𝑖︸︷︷︸
=tr(𝑥𝑦)

+ (𝛿𝑖𝑘𝛿𝑘𝑖)︸   ︷︷   ︸
=𝛿𝑗𝑗=𝑛

𝑥𝑗ℓ𝑦ℓ𝑗︸ ︷︷ ︸
=tr(𝑥𝑦)

− (𝑥𝑖𝑘𝛿𝑘𝑖)︸   ︷︷   ︸
=𝑥𝑖 𝑖=tr 𝑥

(𝛿ℓ𝑗𝑦𝑗ℓ )︸    ︷︷    ︸
=𝑦𝑗𝑗=tr 𝑦

− (𝑥ℓ𝑗 𝛿𝑗ℓ )︸   ︷︷   ︸
=𝑥𝑖 𝑖=tr 𝑥

(𝑦𝑘𝑖𝛿𝑖𝑘)︸   ︷︷   ︸
=𝑦𝑖 𝑖=tr 𝑦

= 2𝑛 tr(𝑥𝑦) + 2 tr(𝑥) tr(𝑦).

□

5.5 𝔤-modules

Definition 5.5.1. Let 𝔤 be a Lie algebra. A 𝔤-module is a vector space𝑉 equipped
with a scaling map

−.− : 𝔤 ×𝑉 →𝑉

(𝑥, 𝑣) ↦→ 𝑥.𝑣

which satisfies the following axioms:

(M1) (𝑎𝑥 + 𝑏𝑦).𝑣 = 𝑎𝑥.𝑣 + 𝑏𝑦.𝑣,

(M2) 𝑥.(𝑎𝑣 + 𝑏𝑤) = 𝑎𝑥.𝑣 + 𝑏𝑥.𝑤,

(M3)
[
𝑥𝑦

]
.𝑣 = 𝑥.𝑦.𝑣 − 𝑦.𝑥.𝑣.
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Proposition 5.5.2. 𝔤-modules are in one-to-one correspondence with representa-
tions of 𝔤.

Proof. Let𝑉 be a vector space, and let 𝔤 be a Lie algebra. We will demonstrate a corre-
spondence between 𝔤-module structures on𝑉 and representations of 𝔤 in 𝔤𝔩(𝑉 ).

Let 𝜙 : 𝔤 → 𝔤𝔩(𝑉 ) be a representation of 𝔤.
Define a 𝔤-module structure on𝑉 by

𝑥.𝑣 ≔ 𝜙(𝑥).𝑣.

Then, (M1) and (M2) follow easily from the fact that 𝜙(𝑥) ∈ 𝔤𝔩(𝑉 ).
Then, the fact that 𝜙 is a Lie algebra homomorphism shows (M3), as[

𝑥𝑦
]
.𝑣 = 𝜙

( [
𝑥𝑦

] )
.𝑣

=
[
𝜙(𝑥)𝜙(𝑦)

]
.𝑣

=
(
𝜙(𝑥)𝜙(𝑦) − 𝜙(𝑦)𝜙(𝑥)

)
.𝑣

=
(
𝜙(𝑥).𝜙(𝑦).𝑣

)
−

(
𝜙(𝑦).𝜙(𝑥).𝑣

)
= 𝑥.𝑦.𝑣 − 𝑦.𝑥.𝑣.

Conversely, suppose that𝑉 has a 𝔤-module structure. Then for all 𝑥 ∈ 𝔤we can define
𝜙(𝑥) ∈ End𝑉 by

𝜙(𝑥).𝑣 ≔ 𝑥.𝑣.

□

Theorem 5.5.3 (Schur’s lemma).

Proof. □

5.6 Weyl’s theorem
Theorem 5.6.1 (Weyl’s theorem). If 𝔤 is a semisimple Lie algebra, then any repre-
sentation of 𝔤 is completely reducible.

6 The root space decomposition
6.1 Maximal toral subalgebras
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Definition 6.1.1. A maximal toral subalgebra 𝔥 of 𝔤 is an algebra for ad 𝑥 =
ad 𝑥𝑠 for all 𝑥 ∈ 𝔥.

Proposition 6.1.2. Let 𝔥 be a maximal toral subalgebra of 𝔤.
We have an isomorphism 𝔥 ≃ 𝔥∗ induced by the Killing form of 𝔤

7 Root systems

Definition 7.0.1.

8 Appendix
8.1 Definitions

Definition 8.1.1. Let𝜓 be some statement that can be evaluated to be true or false.
The Iverson bracket of 𝜓 is

[𝜓 ]? ≔
{
1, if 𝜓 is true
0, otherwise.

a function of the free variables of 𝜓 .

8.2 Some linear algebra
I never really got a chance to learnmuch foundational abstract linear algebra. Learning
this material was a great way for me to brush up on a lot of this stuff, so here’s a short
dump of some important results.

8.2.1 Definitions

Definition 8.2.1. The endomorphism ring End𝑉 of the vector space𝑉 is the
collection of all linear maps from𝑉 to itself.

If𝑇 ∈ End𝑉 and 𝑣 ∈𝑉 , we will write𝑇 .𝑣 to denote𝑇 (𝑣).

Definition 8.2.2. Let k be a field. The n× n matrix ringMat𝑛(k) is defined to
be the ring whose underlying set is k𝑛×𝑛 with pointwise scaling and addition, and
with product given by matrix multiplication.
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Definition 8.2.3. Let𝑉 be a vector space over the field k. The dual space𝑉 ∗ of
𝑉 is the collection of all linear maps𝑉 → k.

8.2.2 Rank-nullity

Theorem 8.2.4 (Rank-nullity). Let 𝑥 ∈ End𝑉 . xhen

rank 𝑥 + nullity 𝑥 = dim𝑉 ,

where
rank 𝑥 ≔ dim im 𝑥, nullity 𝑥 ≔ dim ker 𝑥.

Proof. Let 𝑛 = dim𝑉 , 𝑟 = rank 𝑥 and let ℓ = nullity 𝑥.
Let p = ( 𝑝1, 𝑝2, . . . , 𝑝ℓ ) be a basis for ker 𝑥.
Wemay extend this into a basis of𝑉 by adjoiningmore vectorsq = (𝑞ℓ+1, . . . , 𝑞𝑛),

so that (p, q) = ( 𝑝1, . . . , 𝑝ℓ , 𝑞ℓ+1, . . . , 𝑞𝑛) is a basis of𝑉 .
Then, we claim that

𝑥.q =
(
𝑥.𝑞ℓ+1, · · · 𝑥.𝑞𝑛,

)
is a basis for im 𝑥. We first show that it spans im 𝑥: let 𝑣 ∈ 𝑉 , then 𝑣 = 𝑎1 𝑝1 + · · · +
𝑎ℓ 𝑝ℓ + 𝑎ℓ+1𝑞ℓ+1 + · · · + 𝑎𝑛𝑞𝑛.

So

𝑥.𝑣 = 𝑥.
(
𝑎1 𝑝1 + · · · + 𝑎ℓ 𝑝ℓ + 𝑎ℓ+1𝑞ℓ+1 + · · · + 𝑎𝑛𝑞𝑛

)
=

(
𝑥.𝑎1 𝑝1 + · · · + 𝑎ℓ 𝑝ℓ

)
︸                      ︷︷                      ︸

=0

+
(
𝑥.𝑎ℓ+1𝑞ℓ+1 + · · · + 𝑎𝑛𝑞𝑛

)
= 𝑥.

(
𝑎ℓ+1𝑞ℓ+1 + · · · + 𝑎𝑛𝑞𝑛

)
= 𝑎ℓ+1

(
𝑥.𝑞ℓ+1

)
+ · · · + 𝑎𝑛

(
𝑥.𝑞𝑛

)
.

Hence 𝑥.𝑣 is in the spanof 𝑥.q. Next,we show that it is linearly independent—suppose
that there existed 𝑎ℓ+1, . . . , 𝑎𝑛 such that

𝑎ℓ+1
(
𝑥.𝑞ℓ+1

)
+ · · · + 𝑎𝑛

(
𝑥.𝑞𝑛

)
≠ 0.

But this means that
𝑥.

(
𝑎ℓ+1𝑞ℓ+1 + · · · + 𝑎𝑛𝑞𝑛

)
≠ 0,
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and so the vector 𝑎ℓ+1𝑞ℓ+1 + · · · + 𝑎𝑛𝑞𝑛 is in the kernel of 𝑥, however it is not in the
kernel of 𝑥 because it is not in the span of p, a contradiction.

Hence 𝑥.q is linearly independent, completing our assertion that it is a basis of
im 𝑥.

Then 𝑟 = dim im 𝑥 = 𝑛 − ℓ , and so

𝑟 + ℓ = 𝑛,

which proves the theorem. □

Corollary 8.2.5. Let 𝑥 ∈ End𝑉 . The following are equivalent:

(a) 𝑥 is injective.

(b) 𝑥 is surjective.

(c) 𝑥 is bijective.

Proof. We have the easily verifiable propositions:

dim ker 𝑥 = 0 ⇐⇒ 𝑥 is injective

dim im 𝑥 = dim𝑉 ⇐⇒ 𝑥 is surjective

And, by rank nullity,

dim ker 𝑥 = 0 ⇐⇒ dim im 𝑥 = dim𝑉 ,

hence 𝑥 is injective if and only if it is surjective. □

8.2.3 The matrix representation

We recall the definition of a tensor product:

Definition 8.2.6. Let 𝑉 and 𝑊 be two k-vector spaces with bases v =
(𝑣1, . . . , 𝑣𝑛) andw = (𝑤1, . . . , 𝑤𝑚) respectively.

The tensor product of vector spaces𝑉 ⊗𝑊 , is the k-vector space with
basis {

𝑣𝑖 ⊗ 𝑤𝑗 : 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚
}
.

As a structure, there isn’t really “anything happening” with this construction. The
following definition makes
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Definition 8.2.7. Let𝑉 ,𝑊 be k-vector spaces as before.
Let 𝑣 = 𝑎1𝑣1+ · · ·+ 𝑎𝑛𝑣𝑛 ∈𝑉 and𝑤 = 𝑏1𝑤1+ · · ·+𝑏𝑚𝑤𝑚 ∈𝑊 . The tensor

product of vectors 𝑣 ⊗ 𝑤 is defined

𝑣 ⊗ 𝑤 =

(
𝑛∑
𝑖=1

𝑎𝑖𝑣𝑖

)
⊗ ©«

𝑛∑
𝑗=1

𝑏𝑗𝑤𝑗
ª®¬ ≔

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑎𝑖𝑏𝑗 (𝑣𝑖 ⊗ 𝑤𝑗 ).

This defines a map 𝑖 :𝑉 ×𝑊 →𝑉 ⊗𝑊 given by (𝑣, 𝑤) ↦→ 𝑣 ⊗ 𝑤.

Together, this pair of constructions satisfies a universal property:

Theorem 8.2.8. If 𝑈 and𝑉 are two k-vector spaces, then any bilinear map 𝑓 :
𝑈 ×𝑉 →𝑊 factors through ⊗ : 𝑈 ×𝑉 → 𝑈 ⊗𝑉—there exists a unique linear
map 𝑓 that makes the following diagram commute:

𝑈 ×𝑉

𝑈 ⊗𝑉 𝑊

𝑓
𝑖

𝑓

Proof. Fix bases u = (𝑢1, . . . , 𝑢𝑛) and v = (𝑣1, . . . 𝑣𝑛) of𝑈 and𝑉 .
Let 𝑢 = 𝑎1𝑢1 + · · · + 𝑎𝑛𝑢𝑛 and 𝑣 = 𝑏1𝑣1 + · · · + 𝑏𝑚𝑣𝑚.
Then, by bilinearity,

𝑓 (𝑢, 𝑣) = 𝑓
(
𝑎1𝑢1 + · · · + 𝑎𝑛𝑢𝑛, 𝑏1𝑣1 + · · · + 𝑏𝑚𝑣𝑚

)
=

𝑛∑
𝑖=1

𝑎𝑖 · 𝑓
(
𝑢𝑖 , 𝑏1𝑣1 + · · · + 𝑏𝑚𝑣𝑚

)
=

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑎𝑖𝑏𝑗 · 𝑓 (𝑢𝑖 , 𝑣𝑗 ).

Hence, 𝑓 is completely determined by its values 𝑓 (𝑢𝑖 , 𝑣𝑗 ) where 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤
𝑚. Conversely, any array𝑤𝑖𝑗 ∈𝑉 defines a bilinear map by putting (𝑢𝑖 , 𝑣𝑗 ) ↦→ 𝑤𝑖𝑗 .

Pick some 𝑖, 𝑗 . If 𝑓 = 𝑓 ◦ 𝑖, it must be that

𝑓 (𝑢𝑖 , 𝑣𝑗 ) =
(
𝑓 ◦ 𝑖

)
(𝑢𝑖 , 𝑣𝑗 ) = 𝑓 (𝑢𝑖 ⊗ 𝑣𝑗 ).

□
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Definition 8.2.9. Let𝑈 ,𝑉 , 𝑋 ,𝑌 be k-vector spaces, and let 𝑓 : 𝑈 → 𝑋 and
𝑔 : 𝑉 → 𝑌 be linear maps. We define the tensor product of linear maps
𝑓 ⊗ 𝑔 to be the map

𝑓 ⊗ 𝑔 : 𝑈 ⊗𝑉 → 𝑋 ⊗ 𝑌∑
𝑖

𝑢𝑖 ⊗ 𝑣𝑖 ↦→
∑
𝑖

𝑓 (𝑢𝑖) ⊗ 𝑔 (𝑣𝑖).

Definition 8.2.10. Let 𝑈 ,𝑉 ,𝑊 be vector spaces with bases u, v, w, then any
linear map 𝑓 :𝑉 →𝑊 induces a linear map𝑈 ⊗𝑉 → 𝑈 ⊗𝑊 given by id ⊗ 𝑓

Definition 8.2.11. Let𝑉 be a vector space over k and fix a basis v = (𝑣1, . . . , 𝑣𝑛)
of𝑉 with a dual basis v∗ = (𝑣1, . . . , 𝑣𝑛) of the dual space𝑉 ∗.

By abuse of notation, we define the corresponding elements

v ≔
𝑛∑
𝑖=1

𝑒𝑖 ⊗ 𝑣𝑖 ∈ (k𝑛)∗ ⊗𝑉 , v∗ ≔
𝑛∑
𝑖=1

𝑣𝑖 ⊗ 𝑒𝑖 ∈𝑉 ∗ ⊗ k𝑛

for the basis v and dual basis v∗.

Definition 8.2.12. Let𝑈 ,𝑉 ,𝑊 be vector spaceswithbasesu,v,w, thenwedefine
a product

(𝑈 ∗ ⊗𝑉 ) × (𝑉 ∗ ⊗𝑊 ) → 𝑈 ∗ ⊗𝑊

(𝑢𝑖 ⊗ 𝑣𝑗 )(𝑣𝑘 ⊗ 𝑤𝑙) ↦→ 𝑣𝑘𝑣𝑗 (𝑢𝑖 ⊗ 𝑤𝑙).

Theorem 8.2.13. Let 𝑋 :𝑉 →𝑊 and𝑌 : 𝑈 →𝑉 . Then

u∗ (𝑋 ◦𝑌 )w = (w∗𝑋v) (v∗𝑌 u).

Theorem 8.2.14. Let𝑉 be a vector space over k of dimension 𝑛. Then

End𝑉 ≃𝑉 ∗ ⊗𝑉 ≃ 𝑀𝑛(k).

Proof. Fix a basis v and dual basis v∗ of𝑉 .
Now, if𝑈 is a vector space and 𝑥 ∈ End𝑉 , it has a linear action on𝑈 ∗ ⊗𝑉 given

by 𝑢𝑖 ⊗ 𝑣𝑗 ↦→ 𝑢𝑖 ⊗ (𝑥.𝑣𝑗 ).

37



Lie algebras Jasper Ty

The map𝑇 ↦→ v∗𝑇 v is the desired isomorphism between End𝑉 and𝑉 ∗ ⊗𝑉 .
Then, the map 𝑣𝑖 ⊗ 𝑣𝑗 ↦→ 𝑒𝑖𝑗 provides the isomorphism between𝑉 ∗ ⊗ 𝑉 and

𝑀𝑛(k). □

8.2.4 Change of basis

Proposition 8.2.15. If v andw are two bases of𝑉 , then

vw∗ ∈ (k𝑛)∗ ⊗ k𝑛

encodes the change of basis matrix expressing coordinates in v as coordinates inw.
Similarly,

w∗v ∈𝑉 ∗ ⊗𝑉

encodes the linear map 𝑣𝑖 ↦→ 𝑤𝑖 .

Proof. Define the array 𝑆𝑖𝑗 to be the numbers for which

𝑣𝑖 =
𝑛∑

𝑗=1
𝑆𝑖𝑗𝑤𝑗 .

Then

vw∗ =

(
𝑛∑
𝑖=1

𝑒𝑖 ⊗ 𝑣𝑖

) ©«
𝑛∑

𝑗=1
𝑤𝑗 ⊗ 𝑒𝑗

ª®¬
=

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑤𝑗 (𝑣𝑖)(𝑒𝑖 ⊗ 𝑒𝑗 )

=
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑆𝑖𝑗 (𝑒𝑖 ⊗ 𝑒𝑗 ).

Now, consider the map𝑇 ∈ End𝑉 given by𝑤𝑖 ↦→ 𝑣𝑖 . Then

w∗𝑇w =
𝑛∑
𝑖=1

𝑤 𝑖 ⊗ (𝑇 .𝑤𝑖)

=
𝑛∑
𝑖=1

𝑤 𝑖 ⊗ 𝑣𝑖
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=
𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝛿𝑖𝑗 (𝑤 𝑖 ⊗ 𝑣𝑗 )

=
𝑛∑
𝑖=1

𝑛∑
𝑗=1

(𝑒𝑖 .𝑒𝑗 )(𝑤 𝑖 ⊗ 𝑣𝑗 )

=

(
𝑛∑
𝑖=1

𝑤 𝑖 ⊗ 𝑒𝑖

) ©«
𝑛∑

𝑗=1
𝑒𝑗 ⊗ 𝑣𝑗

ª®¬
= w∗v.

□

8.2.5 Trace

Definition 8.2.16. Let𝑉 be a vector space with basis v = (𝑣1, . . . , 𝑣𝑛) The trace
tr 𝑥 of an endomorphism 𝑥 ∈ End𝑉 of𝑉 is defined to be the sum

𝑛∑
𝑖=1

𝑣𝑖
(
𝑥 (𝑣𝑖)

)
.

Theorem 8.2.17. The trace is a linear operator, i.e if 𝑥, 𝑦 ∈ End𝑉 and 𝑎, 𝑏 ∈ k,

tr(𝑎𝑥 + 𝑏𝑦) = 𝑎 tr 𝑥 + 𝑏 tr 𝑦.

Proof.

tr(𝑎𝑥 + 𝑏𝑦) =
𝑛∑
𝑖=1

𝑣𝑖
(
(𝑎𝑥 + 𝑏𝑦)(𝑣𝑖)

)
=

𝑛∑
𝑖=1

𝑣𝑖
(
𝑎𝑥 (𝑣𝑖) + 𝑏𝑦(𝑣𝑖)

)
=

𝑛∑
𝑖=1

𝑎𝑣𝑖
(
𝑥 (𝑣𝑖)

)
+ 𝑏𝑣𝑖

(
𝑦(𝑣𝑖)

)
= 𝑎

𝑛∑
𝑖=1

𝑣𝑖
(
𝑥 (𝑣𝑖)

)
+ 𝑏

𝑛∑
𝑖=1

𝑣𝑖
(
𝑦(𝑣𝑖)

)
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= 𝑎 tr 𝑥 + 𝑏 tr 𝑦.

□

Theorem 8.2.18. Let𝑉 be a vector space.
For all 𝑥, 𝑦 ∈ End𝑉 , tr(𝑥𝑦) = tr(𝑦𝑥).

Proof. Fix a basis v = (𝑣1, . . . , 𝑣𝑛) of𝑉 .

tr(𝑥𝑦) =
𝑛∑
𝑖=1

𝑣𝑖 .𝑥𝑦.𝑣𝑖

=
𝑛∑
𝑖=1

𝑛∑
𝑗=1

(
𝑣𝑖 .𝑥.𝑣𝑗

) (
𝑣𝑗 .𝑦.𝑣𝑖

)
=

𝑛∑
𝑗=1

𝑛∑
𝑖=1

(
𝑣𝑗 .𝑦.𝑣𝑖

) (
𝑣𝑖 .𝑥.𝑣𝑗

)
=

𝑛∑
𝑖=1

𝑣𝑖 .𝑦𝑥.𝑣𝑖

= tr(𝑦𝑥).

□

Theorem 8.2.19. The trace of a linear operator 𝑥 ∈ End𝑉 is basis invariant— its
value is independent of the basis used to compute it.

Theorem 8.2.20 (Chinese Remainder Theorem). Let 𝑅 be a principal ideal do-
main, and let 𝐼1, . . . , 𝐼𝑛 be coprime ideals of 𝑅.

Put 𝐼 = 𝐼1 ∩ · · · ∩ 𝐼𝑛.
The map 𝑅/𝐼 → 𝑅/𝐼1 × · · · × 𝑅/𝐼𝑛 given by

𝑥 + 𝐼 ↦→
(
𝑥 + 𝐼1, · · · 𝑥 + 𝐼𝑛

)
is an isomorphism.
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