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What is this?
This arenotes I tookwhile reading “Anelementary and constructive solution toHilbert’s
17th Problem for matrices” by Christopher J. Hillar and Jiawang Nie [HN06].
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Notation
Let x = (𝑥1, . . . , 𝑥𝑚) be a collection of indeterminates, and let 𝐹 [x] and 𝐹 (x) denote
the polynomial ring and the ring of rational functions in the field 𝐹 respectively.

For any commutative ring 𝑅, let Σ𝑅2 denote the sums of squares of 𝑅, i.e

Σ𝑅2 ≔

{
𝑘∑
𝑖=1
𝑟2𝑖 : 𝑟1, . . . , 𝑟𝑘 ∈ 𝑅

}
.

Similarly, let 𝑅2 denote the squares of 𝑅.
LetMat𝑑 (𝑅) denote the set of 𝑑 × 𝑑 matrices in the ring 𝑅. And, let Sym𝑑 (𝑅)

denote the subset ofMat𝑑 (𝑅) consisting of symmetric matrices.
If 𝐴 is a matrix and 𝐽 ⊆ {1, . . . , 𝑛}, let 𝐴[ 𝐽 ] denote the principal submatrix with

indices picked out by 𝐽 .
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1 Introduction
We seek to give a proof for the main result in [HN06].

Theorem 1 (Procesi-Schacher, Gondard-Ribenboim). Let 𝐴 ∈ Sym𝑑 (R[x]). Let
𝐴(x0) denote 𝐴 with all entries evaluated at x0 ∈ R𝑑 . If 𝐴(x0) ∈ Sym𝑑 (R) is
positive semidefinite for all choices of x0 ∈ R𝑚, then 𝐴 ∈ Σ

[
Sym𝑑 (R(x))

]2
This generalizesArtin’s celebrated, classical result onnonnegativepolynomialswith

real coefficients.

Theorem 2 (Artin’s solution to Hilbert’s 17th Problem). Let 𝑓 ∈ R[x]. The fol-
lowing are equivalent:

(i) 𝑓 (x) ≥ 0 for all x.

(ii) 𝑓 ∈ ΣR(x)2.

We will prove the more general statement, which proves Theorem 1 with the help
of Theorem 2.

Theorem 3. Let 𝐹 be a real field, and let 𝐴 ∈ Sym𝑑 (𝐹 ) such thatdet 𝐴[ 𝐽 ] ∈ Σ𝐹 2

for all 𝐽 ⊆ {1, . . . , 𝑛}. Then 𝐴 ∈ Σ
[
Sym𝑑 (𝐹 )

]2.
Proof that Theorem 3 implies Theorem 1. Let 𝐴 ∈ Sym𝑑 (R[x]).

Wewill first show that all principal minors of 𝐴 are in fact non-negative polynomi-
als. We note that for all matrices 𝐻 ∈ Mat𝑑 (R[x]), (det𝐻 )(x0) = det

(
𝐻 (x0)

)
and

𝐻 [ 𝐽 ] (x0) = 𝐻 (x0) [ 𝐽 ] for all 𝐽 ⊆ [𝑛]. In other words, taking determinants and
taking submatrices commutes with evaluation. So, if 𝐽 ⊆ [𝑛],(

det 𝐴[ 𝐽 ]
)
(x0) = det

(
𝐴[ 𝐽 ] (x0)

)
= det

(
𝐴(x0) [ 𝐽 ]

)
≥ 0,

for all x0 ∈ R𝑑 supposing that 𝐴(x0) is positive semidefinite for all x0 ∈ R𝑑 . Then we
may apply Theorem 2 to det 𝐴[ 𝐽 ] ∈ R[x], to conclude that det 𝐴[ 𝐽 ] ∈ ΣR(x)2.

Now, take 𝐴 to live in Sym𝑑 (R(x)), where we are simply extending the inclusion
of R[x] into R(x), then we can apply Theorem 3, with 𝐹 = R(x), to say that 𝐴 ∈
Σ
[
Sym𝑑 (R(x))

]2. □
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2 Review of real algebra
Wewill recover basic results in the theory of real symmetricmatrices in themore general
context of real closed fields.

First, a small digression about ordering. The data involving the order in an ordered
field can be encoded as a set that names all the positive elements.

Definition 4. An ordering of a field 𝐹 is a set of elements 𝑃 ⊆ 𝐹 such that
𝑃 + 𝑃 ⊆ 𝑃 , 𝑃 · 𝑃 ⊆ 𝑃 , 𝐹 2 ⊆ 𝑃 , −1 ∉ 𝑃 , and 𝑃 ∪ −𝑃 = 𝐹 .

If one has an ordered field 𝐹 , then one has an ordering 𝑃 by considering all the
elements 𝑝 ∈ 𝐹 such that 𝑝 ≥ 0. Conversely, if one has a field and an ordering 𝑃 and
a field 𝐹 , one can make 𝐹 an ordered field by putting 𝑝 ≥ 0 for all 𝑝 ∈ 𝑃 .

Now, we discuss real closed fields.

Definition 5. Thefirst order language of ordered fields OrdField consists of
well-formed sentences involving the usual logical symbols and connectives, as well
as the non-logical symbols +, ·, 0, 1, −1, ≤.

A real closed field is an ordered field for which a sentence 𝜓 in OrdField is
true if and only if it is true inR.

This is not theusual definitionof a real closedfield. Wewill discuss a few important,
equivalent definitions.

Theorem 6 (Artin-Schreier 1926). Let 𝐹 be a field. The following are equivalent:

(i) −1 ∉ Σ𝐹 2, and −1 ∈ Σ𝐺2 for any nontrivial algebraic extension𝐺 of 𝐹 .

(ii) 𝐹 2 is an ordering of 𝐹 , and every odd degree polynomial with coefficients in
𝐹 has a root in 𝐹 .

(iii) 𝐹 ≠ 𝐹 [
√
−1], and 𝐹 [

√
−1] is algebraically closed.

Proof. See Theorem 1.2.9 in [N] □

Theorem 7 (Tarski 19??). Let 𝐹 be a field. The following are equivalent:

(i) 𝐹 is real closed.

(ii) 𝐹 satisfies any of the statements in Theorem 6.
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Proof. We will define RCF to be the theory of real closed fields, to be the field
axioms adjoined with (the correct encoding of) statement (ii) in Theorem 6.

One can prove quantifier elimination is possible in RCF, and moreover algo-
rithmically possible, hence RCF is a decidable theory. Moreover, one can show that
RCF can prove or disprove any quantifier free statement in OrdField, hence RCF is
complete. Lastly, R |= RCF, so by basic model theory, if 𝑅 |= RCF, 𝑅 and R are
elementarily equivalent, i.e, they agree on all sentences in OrdField. □

With the logic out of the way, we can begin to glean some properties of real closed
fields.

Proposition 8 (The ordering onRCFs). In a real closed field 𝑅, the set 𝑅2 identi-
fies all the positive elements.

Proof. Consider the OrdField sentences

∀𝑦(𝑦2 ≥ 0)

and
∀𝑥

(
𝑥 ≥ 0 ⇐⇒ ∃𝑦(𝑥 = 𝑦2)

)
,

which are evidently true in R. □

Proposition 9 (Characterizations of PSDmatrices over an RCF). Let 𝑅 be a real-
closed field and let 𝐴 ∈ Sym𝑑 (𝑅). The following are equivalent

(i) All the principal minors of 𝐴 are nonnegative.

(ii) x𝑇 𝐴x ≥ 0 for all x ∈ 𝑅𝑑 .

(iii) 𝐴 is diagonalizable with nonnegative eigenvalues.

Proof. If we fix 𝑑, we may completely encode the statement (i) =⇒ (ii) in OrdField,
hence its truth in 𝑅 coincides with its truth in R.

As an example, put 𝑑 = 2. Then our statement in the first order language of or-
dered fields is

∀𝑎, 𝑏, 𝑐, 𝑑[ (
𝑎 ≥ 0 ∧ 𝑑 ≥ 0 ∧ 𝑎𝑑 − 𝑏𝑐 ≥ 0

)
︸                                    ︷︷                                    ︸

nonnegative principal minors

=⇒ ∀𝑥, 𝑦
(
𝑎𝑥2 + (𝑏 + 𝑐)𝑥𝑦 + 𝑑𝑦2 ≥ 0

)
︸                                        ︷︷                                        ︸

positive-semidefiniteness

]
.
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Similarly, we may do (ii) =⇒ (iii).

The statement “
(
𝑎 𝑏
𝑐 𝑑

)
is diagonalizable with nonnegative eigenvalues”, in the

𝑑 = 2 case, is 1

∃𝑒, 𝑓 , 𝑔, ℎ[
𝑒ℎ − 𝑓 𝑔 = 1 ∧ 𝑒2𝑏 + 𝑒 𝑓 𝑑 − 𝑓 𝑒𝑎 + 𝑓 2𝑐 = 0 ∧ 𝑔2𝑏 + 𝑔ℎ𝑑 − ℎ 𝑔𝑎 + ℎ2𝑐 = 0

∧ ℎ𝑒𝑎 + ℎ𝑓 𝑐 − 𝑔𝑒𝑏 − 𝑔 𝑓 𝑑 ≥ 0 ∧ 𝑒 𝑔𝑏 + 𝑒ℎ𝑑 − 𝑓 𝑔𝑎 − 𝑓 ℎ𝑐 ≥ 0
]

The point is, we can encode the whole theorem for a fixed 𝑑 entirely as a sentence in
OrdField. Then, we use the fact that the theorem is true for real symmetric matrices.

□

Next, we discuss weaker objects than real closed fields, which we will need.

Definition 10. A real field is a field 𝐹 in which −1 ∉ Σ𝐹 2.

Proposition 11. All real fields 𝐹 have at least one ordering ≤ such that (𝐹 , ≤) is an
ordered field. Moreover, when equippedwith such an order, there exists an ordered
field 𝑅 such that 𝑅 is real closed, 𝑅 is algebraic extension of 𝐾 , and the order on 𝑅
extends the order on 𝐹 . We call 𝑅 a real closure of 𝐹 .

Proof. Theorem 1.4.2 in [N]. □

3 Proof of the theorem
Wewill need the following lemma.

Lemma 12. Let 𝐹 be a real field and suppose 𝐴 satisfies the hypotheses of Theorem
3; 𝐴 ∈ Sym𝑑 (𝐹 ) such that det 𝐴[ 𝐽 ] ∈ Σ𝐹 2 for all 𝐽 ⊆ {1, . . . , 𝑛}.

Then the minimal polynomial𝑚(𝑡) ∈ 𝐹 [𝑡] of 𝐴 is of the form:

𝑚(𝑡) =
𝑘∑
𝑖=0

(−1)𝑘−𝑖𝑎𝑖 𝑡 𝑖 = 𝑡𝑘 − 𝑎𝑘−1𝑡𝑘−1 + · · · + (−1)𝑘𝑎0.

where 𝑎𝑖 ∈ Σ𝐹 2 for all 𝑖. Moreover, 𝑎1 ≠ 0.
1Trust me

5



Hillar-Nie 2006 Jasper Ty

Proof. This proof happens fairly quickly in [HN06]. We will spend some more detail
on this.

Step 1 Characterize sums of squares in terms of nonnegativity in real
closures
Sums of squares play a special role in real fields 𝐾 . We have that

Σ𝐾 2 =
⋂
𝑃 is an

ordering of 𝐾

𝑃 . ([N] Theorem 1.1.16)

One can interpret this as saying that they are the elements that will always be
positive regardless of the order one realizes on 𝐾 . So, if 𝑥 ∈ Σ𝐹 2, that means
that 𝑥 ≥ 0 in any ordering of 𝐹 . In fact, if 𝑥 ≥ 0 in any real closure, then this
means that 𝑥 ∈ Σ𝐾 2, as 𝑥 ≥ 0 in a real closure 𝑅 means that 𝑥 ∈ 𝑃 in some
ordering 𝑃 of 𝐹 which 𝑅 extends. We conclude:

If 𝑥 ≥ 0 in all real closures of 𝐹 , then 𝑥 ∈ Σ𝐹 2, and conversely.

Then the path ahead is clear: we want to show that 𝑎𝑖 ≥ 0 in all real closures 𝑅
of 𝐹 .

Step 2 Show that 𝐴 has nonnegative eigenvalues in every real closure
If𝑅 is a real closure of 𝐹 , all the principalminorsdet 𝐴[ 𝐽 ] of 𝐴 are nonnegative
in 𝑅, as, by the hypothesis, they are sums of squares in 𝐹 , hence they are sums
of squares in 𝑅, and the nonnegative elements of 𝑅 are precisely the squares
(Theorem 8), so det 𝐴[ 𝐽 ] is a sum of nonnegative elements of 𝑅.
Then, we have the following:

In any real closure of 𝐹 , all the principal minors of 𝐴 are nonnegative.

Now, combined with 9, this statement reads

In any real closure of 𝐹 , 𝐴 is diagonalizable with nonnegative eigenvalues.

Step 3 Prove the lemma
Each 𝑎𝑖 is a sum of products of eigenvalues of 𝐴. (Specifically, it is an elemen-
tary symmetric polynomial in the distinct eigenvalues of 𝐴, since 𝐴 is diagonal-
izable).
Then 𝑎𝑖 is nonnegative in every real closure 𝑅 of 𝐴, as we have shown that its
eigenvalues in 𝑅 are nonnegative. But, as we have noted, this means that 𝑎𝑖 is a
sum of squares in 𝐹 ! This completes the proof of the first statement.
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Finally, we complete the theorem by proving the second statement.
Since 𝐴 is diagonalizable, 𝑚(𝑡) has no repeated roots, hence 0 can only appear

at most once. This means that there is exactly 1 term in 𝑎1, the 𝑘 − 1th elementary
symmetric polynomial in the roots of𝑚(𝑡), that avoids this zero and is hence positive,
hence 𝑎1 ≠ 0. □

There is a formula in [H&J] that expresses the characteristic polynomial directly in
terms of principal minors, and I’m sure it simplifies this proof, but I haven’t had the
time to try it.

We are now ready to prove the main theorem.

Proof of Theorem 3. Let 𝐹 be a real field and let 𝐴 ∈ Sym𝑑 (𝐹 ) be a matrix whose
principal minors are all nonnegative.

Let𝑚(𝑡) = 𝑡𝑘 − 𝑎𝑘−1𝑡𝑘−1 + · · · + (−1)𝑘𝑎0 be the minimal polynomial of 𝐴.
Then, by Cayley-Hamilton, 𝑚(𝐴) = 0, so by splitting the even and odd degree

terms,

(𝐴𝑘−1 + 𝑎𝑘−2𝐴𝑘−3 + · · · + 𝑎1𝐼 )𝐴 = 𝑎𝑚−1𝐴𝑘−1 + 𝑎𝑚−3𝐴𝑚−3 + · · · + 𝑎0𝐼 .

Nowput 𝐵 = 𝐴𝑘−1+𝑎𝑘−2𝐴𝑘−3+· · ·+𝑎1𝐼 ∈ Sym𝑑 (𝐹 ). 𝐵 is invertible, since 𝑎1 = 0,
hence it does not have 0 as an eigenvalue. Moreover, 𝐵’s inverse is also symmetric, i.e
𝐵−1 ∈ Sym𝑑 (𝐹 ).

Then, 𝐵−1 = 𝐵 · 𝐵−2 = 𝐵 · (𝐵−1)2, so

𝐴 = 𝐵
(
𝑎𝑘−1𝐵

−2𝐴𝑘−1 + 𝑎𝑘−3𝐵−2𝐴𝑘−3 + · · · + 𝑎0𝐵−2
)
.

Everything “in sight” is a sum of squares.

• All coefficients 𝑎𝑖 ∈ 𝐹 appearing are sums of squares; 𝑎𝑖 ∈ Σ𝐹 2.

• Each 𝐴𝑘−2𝑙 term is a square, as 𝑘 is odd; 𝐴𝑘−2𝑙 ∈
[
Sym𝑑 (𝐹 )

]2.
• 𝐵 itself is a sum of squares, as 𝐵 = 𝐴𝑘−1 + 𝑎𝑘−2𝐴𝑘−3 + · · · + 𝑎1𝐼 , and 𝑘 is odd;
𝐵 ∈ Σ

[
Sym𝑑 (𝐹 )

]2
• And finally, 𝐵−2 = (𝐵−1)2 ∈

[
Sym𝑑 (𝐹 )

]2.
So, in all, 𝐴 ∈ Σ

[
Sym𝑑 (𝐹 )

]2. The 𝑘 even case is similarly argued. □
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