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The fundamental theorem of calculus has several statements, and, depending on
who you ask, can even be considered to be more than just one theorem. In one per-
spective, that of differential forms, Stokes’ Theorem is the true fundamental theorem
of calculus. In another, in that of measure theory, maybe the Lebesgue differentiation
theorem is in some sense the fundamental theorem of calculus.

Probably, there are way more perspectives, advanced and elementary, on the “fun-
damental theorem of calculus”. Here I cover the fundamental theorem of calculus that
appears in... calculus classes. However, this is a rigorous exposition, and requires some
understanding of real analysis. I cover their relationships via continuity and differen-
tiability.

I was asked by a university I applied to for amath Ph.D to prepare an explanation of
the fundamental theorem of calculus for an interview. This gave birth to these notes,
which I typed up as I was re-studying this topic. I expected to give a super technical
explanation, but it turns out I only had to give a very elementary, introductory one, as
if I was explaining in a Calculus I class. Oh well.

Preliminaries

Let 5 be a Riemann-integrable function on the interval [0, 1]. Note that this means
5 is bounded, as Riemann sums are not well-defined for an unbounded function on a
closed interval.

Consider the function � defined to be

� (F) :=

∫ F

0
5 (B)3B.
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We claim that � is continuous.

Proof. For all points F, G such that 0 < F < G < 1, we have that

∫ F

0
5 (B)3B +

∫ G

F
5 (B)3B =

∫ G

0
5 (B)3B.

So,

� (F) +

∫ G

F
5 (B)3B = � (G).

and so � (G) − � (F) =

∫ G

F
5 (B)3B for all 0 < F < G < 1.

Use 5 ’s boundedness now, and let | 5 (B) | < " for all B ∈ [0, 1]. We can now
directly show that � is continuous.

Let Y > 0. Put X = Y/" , so if

|G − F | < X =
Y

"
,

we have that

|� (G) − � (F) | =

����

∫ G

F
5 (B)3B

����

≤

∫ G

F
| 5 (B) |3B

<

∫ G

F
"3B

= " |G − F |

< "
Y

"
= Y,

thus showing that � is continuous. (Andmore, this proves that � is uniformly contin-
uous) �

1 The first fundamental theorem of calculus

What if 5 is already continuous? In that case, we have the following result:
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Theorem 1.0.1 (The first fundamental theorem of calculus). Let 5 be Riemann-
integrable on [0, 1], and let 5 be continuous at a point F0 of [0, 1]. Then if we
define the function � to be

� (F) :=

∫ F

0
5 (B)3B,

we have that � is differentiable at F0, and moreover,

� ′ (F0) = 5 (F0).

Proof. Pick two distinct points F− < F+ inside [0, 1]. Note that the difference quo-
tient for the function � ,

� (F+) − � (F−)

F+ − F−
,

has a particular meaning, looking at the following computation:

� (F+) − � (F−)

F+ − F−
=

∫ F+

0
5 (B)3B −

∫ F−

0
5 (B)3B

F+ − F−
=

∫ F+

F−
5 (B)3B

F+ − F−
.

It is the average value of 5 on the interval [F+, F−]. The idea here is that 5 ’s continuity
at F0 in fact forces the average value of 5 to be close to 5 (F0) in a small enough neighbor-
hood of F0.

Use 5 ’s continuity: let Y > 0, and choose X such that

| 5 (B) − 5 (F0) | < Y for all B such that |B − F0 | < X .

Now, choose the two numbers F− < F+ so that

F0 − X < F− ≤ F0 ≤ F+ < F0 + X .

This just means that [F+, F−] is a smaller neighborhood of F0 than the closed ball of
radius X centered at F0; [F0− X, F0 + X]. Nowwewrite down the distance between our
difference quotient and 5 (F0), which is

����
� (F+) − � (F−)

F+ − F−
− 5 (F0)

���� ,
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and make the following calculation:

����
� (F+) − � (F−)

F+ − F−
− 5 (F0)

���� =

�����
1

F+ − F−

∫ F+

F−
5 (B)3B − 5 (F0)

�����

=

�����
1

F+ − F−

∫ F+

F−
5 (B)3B −

F+ − F−

F+ − F−
5 (F0)

�����

=

�����
1

F+ − F−

(∫ F+

F−
5 (B)3B − (F+ − F−) 5 (F0)

)�����

=

�����
1

F+ − F−

(∫ F+

F−
5 (B)3B −

∫ F+

F−
5 (F0)3F

)�����

=

�����
1

F+ − F−

∫ F+

F−

(
5 (B) − 5 (F0)

)
3B

�����

≤
1

F+ − F−

∫ F+

F−

����5 (B) − 5 (F0)

����3B

<

1

F+ − F−

∫ F+

F−
Y3B

=
1

F+ − F−
Y(F+ − F−)

=
1

F+ − F−
Y(F+ − F−)

= Y.

If we compress that all down, we have that

����
� (F+) − � (F−)

F+ − F−
− 5 (F0)

���� < Y,

and we are almost done. If we fix F− = F0 and let F+ ↓ F0, 1 the above allows us to
prove the right hand limit

lim
F+↓F0

� (F+) − � (F0)

F+ − F0
= 5 (F0).

1This notation means that F+ approaches F0 from above
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Then, fixing F+ = F0 and letting F− ↑ F0,2 this gives us the left hand limit

lim
F−↑F0

� (F0) − � (F−)

F0 − F−
= 5 (F0).

Then we have the two-sided limit, and we finally conclude that

� ′ (F0) = lim
F→F0

� (F) − � (F0)

F − F0
= 5 (F0).

�

We note some consequences of this theorem. The theorem statement, in the in-
terest of generality, was concerned only with continuity at a point. This can easily be
extended to the less general but more immediate case of continuity for the whole func-
tion

Corollary 1.0.2. If 5 is a continuous function on [0, 1], then the function

� (F) =

∫ F

0
5 (B)3B

is differentiable on [0, 1]. Moreover, � ′
= 5 . This is commonly stated in more

slick but less precise notation

5 (F) =
3

3F

∫ F

0
5 (B)3B

Butnote that � is not justdifferentiable, but also continuously differentiable,mean-
ing its derivative is itself continuous.

This motivates the following statements. Let�0 [0, 1] denote the set of all contin-
uous functions on [0, 1]. Let�1 [0, 1] denote the set of all continuously differentiable
functions on [0, 1].

2Similarly

5



The Fundamental Theorem of Calculus Jasper Ty

Define the two maps

� : �0 [0, 1] → �1 [0, 1]

5 (•) ↦→

∫ •

0
5 (B)3B

� : �1 [0, 1] → �0 [0, 1]

5 ↦→ 5 ′

Care must be taken to verify that these maps are in fact defined correctly. For example,
why is�1 [0, 1] the codomain of � ? This is a consequence of the fundamental theorem
of calculus itself. Why is�0 [0, 1] the codomainof�? This follows from thedefinition
of�1 [0, 1] as the space of continuously differentiable functions.

Once those are resolved, we obtain the following, simple corollary of the first fun-
damental theorem of calculus

Corollary 1.0.3. � is a left inverse of � , i.e � ◦ � = id, the identity map 5 ↦→ 5

This is really a restatement of the first fundamental theorem of calculus when we
restrict ourselves to �0 [0, 1] and �1 [0, 1]. This has a further generalization if we
define� 9 [0, 1],�9 , � 9 in the natural way.

Corollary 1.0.4. For all < > 0, � 9 sends functions in�< [0, 1] to�<+9 [0, 1], and
�9 is a left inverse of � 9

Can � be a right-inverse of � ? No— there is a simple argument: the image of �
consists of functions that have the value 0 at 0, since

∫ 0

0
5 (B)3B = 0

trivially for any function 5 . But there are continuously differentiable functions 5 such
that 5 (0) ≠ 0. Then (� ◦ �) 5 (0) = 0 ≠ 5 (0).

The main part of the problem is that ( 5 + �)′ = 5 ′ for all constants � . The
following will show that fixing this situation is all about just putting the� “back in the
picture”.

Lemma 1.0.5. Let 5 be a function on [0, 1]. We call differentiable functions �
such that � ′

= 5 antiderivatives of 5 .
Suppose 5 has antiderivatives. Then we have the following
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(a) There exists a unique antiderivative �0 of 5 such that �0(0) = 0

(b) Every antiderivative of 5 is �0 + � for some constant� .

(c) If 5 is continuous, then �0 = � 5 =

∫ •

0
5 (B)3B

Proof. Note that for any antiderivative � of 5 and any constant� , (� +�)′ = � ′
= 5 ,

so � + � is also an antiderivative of 5 .

(a) Suppose 5 has an antiderivative �∗. Then we can define the function

�0 := �∗ − �∗(0)

which, by the note, is an antiderivative of � . And, �0(0) = �∗(0) − �∗(0) = 0.

(b) Recall a consequence of themean value theorem: a function that has zero deriva-
tive everywhere is constant.

Let � be an antiderivative of 5 . Then

(�0 − � )′ = 5 − 5 ≡ 0

so �0 − � is constant and �0 − � ≡ � for some constant� , hence � = �0 + � .
This gives us our uniqueness proof for �0, since this forces two antiderivatives
that agree at any point to agree at all points.

(c) This just follows now from the first fundamental theorem of calculus and the
uniqueness of �0.

�

With this lemma we have one final corollary of the first fundamental theorem of
calculus— something that looks almost like the second fundamental theorem of calculus

Corollary 1.0.6. If 5 is continuous and � is an antiderivative of 5 ,

∫ 1

0
5 (B)3B = � (1) − � (0)
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Proof.

� (1) − � (0) = (�0(1) + �) − (�0(0) + �)

= �0(1) − �0(0)

=

∫ 1

0
5 (B)3B −

∫ 0

0
5 (B)3B

=

∫ 1

0
5 (B)3B

�

But we have a somewhat stringent requirement on 5 here, namely that it should
be continuous. This forces our antiderivative � to be continuously differentiable rather
than just differentiable. The next result loosens this requirement

2 The second fundamental theorem of calculus

It turns out, whatwas not important for the above identitywas not the continuity of 5 ,
but the existence of an antiderivative � of 5 . It just so happens that 5 ’s continuity did
in fact imply it had an antiderivative– this waswhat the first fundamental theorem said!
We just had to stir in the crucial fact that antiderivatives are more or less “the same” up
to adding a constant.

Now, more generally, we state the following theorem

Theorem 2.0.1. (The second fundamental theorem of calculus)
If 5 is Riemann-integrable on [0, 1], and � is an antiderivative of 5

∫ 1

0
5 (F)3F = � (1) − � (0)

Proof. Let % = 0 = F0 < F1 < · · · < F<−1 < F< = 1 be a partition of [0, 1].
We do something very common when working with partitions: write a quantity

involving the first and last points as a telescoping sum

� (1) − � (0) = � (F<) − � (F0)

= � (F<) − � (F<−1) + � (F<−1) − · · · − � (F1) + � (F1) − � (F0)

=

<∑

7=1

� (F7) − � (F7−1)
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Since � is differentiable, the mean value theorem gives us points B7 ∈ [F7−1, F7]
such that

� (F7) − � (F7−1)

F7 − F7−1
= � ′ (B7)

for all 7. Since � ′ (B7) = 5 (B7), we have that � (F7) − � (F7−1) = 5 (B7)(F7 − F7−1) =
5 (B7)ΔF7 , whereΔF7 := F7 − F7−1.

Plugging this in to the sum, we’ve shown that

� (1) − � (0) =
<∑

7=1

5 (B7)ΔF7

Recall the definition of the lower and upper Riemann sums !(%, 5 ) and* (%, 5 )

!(%, 5 ) :=
<∑

7=1

;7ΔF7 * (%, 5 ) :=
<∑

7=1

"7ΔF7

where
;7 := inf

F7−1≤F≤F7
5 (F) "7 := sup

F7−1≤F≤F7

5 (F)

This gives us right away that;7 ≤ 5 (B7) ≤ "7 , as B7 ∈ [F7−1, F7]. Then

;7ΔF7 ≤ 5 (B7)ΔF7 ≤ "7ΔF7

So
<∑

7=0

;7ΔF7 ≤
<∑

7=0

5 (B7)ΔF7 ≤
<∑

7=0

"7ΔF7

Which we may read off as

!(%, 5 ) ≤
<∑

7=1

5 (B7)ΔF7 ≤ * (%, 5 )

We also already know that

!(%, 5 ) ≤

∫ 1

0
5 (F)3F ≤ * (%, 5 )

Hence, as an exercise in inequality trickery, we may deduce
��������

∫ 1

0
5 (F)3F −

(
� (1) − � (0)

)

︸             ︷︷             ︸
=
∑<

7=1 5 (B7 )ΔF7

��������
≤ * (%, 5 ) − !(%, 5 )
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Note that we have proved this for an arbitrary partition % . I appeal now to the theo-
rem3 that says if 5 is Riemann-integrable, wemay always choose a partition % such that
* (%, 5 ) − !(%, 5 ) is arbitrarily small.

Let Y > 0. Choose a partition % such that* (%, 5 ) − !(%, 5 ) < Y. Then

�����

∫ 1

0
5 (F)3F − (� (1) − � (0))

�����
≤ Y

Since Y was arbitrary, in fact

�����

∫ 1

0
5 (F)3F − (� (1) − � (0))

�����
≤ 0

And finally!
∫ 1

0
5 (F)3F = � (1) − � (0)

�

Say we’re interested in seeing where the second fundamental theorem of calculus
holds but not the first. In general, it’s actually not so easy to come up with functions
that are discontinuous but have antiderivatives. Consider the reverse problem: can we
finddifferentiable functionswhose derivative is discontinuous? The following theorem
gives us a big problem here.

Theorem 2.0.2. (Darboux’s theorem)
If 5 is differentiable on [0, 1], then 5 ′ has the intermediate value property—for

all 5 ′ (0) < ) < 5 ′ (1), there exists a point 0 < B < 1 such that 5 (B) = ) .

This tells us that 5 ′ cannot have simple discontinuities, as those break the interme-
diate value property.

However, that doesn’t stop us, since simple discontinuities are not the only kinds
of discontiniuties.

An example of a function with a discontinuous derivative is the function, defined
on [−1, 1]

5 (F) =




F2 sin
(
1
F

)
F ≠ 0

0 F = 0

3For a reference, seeTheorem7.2.8 inAbbott’sUnderstandingAnalysis orTheorem6.6 inRudin’sPrin-
ciples of Mathematical Analysis
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This has the derivative

5 ′ (F) =




2F sin
(
1
F

)
− cos

(
1
F

)
F ≠ 0

0 F = 0

which has discontinuity of the second kind at 0.
So for any 0 < 0 < 1, the second fundamental theorem of calculus tells us that

∫ 1

0

[
2F sin

(
1

F

)
− cos

(
1

F

)]
3F = 12 sin

(
1

1

)
− 02 sin

(
1

0

)

Neat.

3 Counterexamples

The following demonstrates how jump discontinuities give a partial converse to the
first fundamental theorem of calculus— if 5 has a jump discontinuity at F0, � is not
differentiable at F0.

Example 3.0.1. The following function is not continuous at 0.

5 (B) :=

{
0 B < 0

1 B ≥ 0

� (B) ends up being a ramp function, which is not differentiable at 0.

The next example shows that removable discontinuities are more or less harmless

Example 3.0.2. The following function is not continuous at 0.

5 (B) :=

{
1 B ≠ 0

10000 B = 0

but � (B) = B , which is differentiable at 0.

The following, most epic function yet, is Volterra’s function, which I do not want
to type up. It’s a function that is differentiable everywhere, but whose derivative is
not even Riemann integrable at all, which seems like a counterexample to the second
fundamental theoremof calculus, but this boils down to the considerationsmentioned:
this function’s derivative is super discontinuous. In fact, it is discontinuous on aCantor
set.
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Example 3.0.3. (Volterra’s function)
Follow this Wikipedia link!
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