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1 Introduction

Definition r.1. The power series exp and log are defined by

)

exp(x) = Z al (1)
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log(x) = i(—l)’“rl

n=1
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We wish to show that (log o exp) (x) = x. You can show this using Lagrange inversion
or something like that. However, we will do this with our bare hands.
Here is a small amount of some “boilerplate” we’ll need:

Definition r.2. Letay,...,4; > 0,andletn = ay +- - -+ a;. The corresponding
multinomial coefficient for this tuple is
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Proposition 1.3. The multinomial coefficient

( n )._ n!
Aly vy dp ayl---ap!

counts the number of partitions of the set {1, . . ., k} into parts A1, . .., Ay, such
that |A1| = ALy |A/e| = ayj.

Proposition 1.4 (“Power rule”).

i x| = i Z Cay """ Ca, x™ ()
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2 Proof
We first grind it out into a raw expression for the coefficients of log o exp, as an expo-

nential generating function, then demonstrate that each coefficient is a signed sum of
cyclically ordered set partitions.
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Use “power rule” (3)
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break up fraction
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this quantifies over all strong compositions of m
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convert multiplicity into summation
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m=0 A1yeensdy 152 Aj,..., Ay is a partition

strong composition of 72 of {1,...,m}

|d1]=a1,....| dn|=ay

strong composition of 72

this quantifies over all ordered set partitions of{1,...,m}
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m=0 Ay,..., 4, is a partition N
of {1,...,m}

this adds a cyclic symmetry,
which we will now prove
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0 Ay,...,4, is a partition
of {1,...,m}

break apart parts and order
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m=0 Ajisanunordered Aji,..., 4, is an ordering
partition of {1,...,m} of A’s parts
—_—
there are 7! such orders
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m=0 A isan unordered
partition of {1,...,m}
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m=0 A s an unordered
partition of {1,...,m} convert multiplicity into sum.
this is the # of cyclic orders
of length 7 (can you show why?)

NP >

m=0 Aisanunordered Aj,...,4, isacyclic

partition of {1,...,m} ordering of A’s parts

— i Z (_1)n+1 %W:

m=0 | Ay,..., 4, is a cyclically ordered
partition of {1,...,m}

voila!

Now for this series to be equal to x, it must be that
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1, ifm=1;

(_ 1) n+1 — {
Ay,..., 4y is a cyclically ordered O’ otherwise.

partition of {1,...,m}

Which we will prove using a sign-reversing involution. Namely, a function which
records exactly how terms cancel out in a sum.

Proposition 2.1. Let X be a finite set, and letsign : X - R Iff : X — Xisa
bijection such that

sign /' (x) = —sign f(x) Vx e X,

Z signx = 0.

xeX

then

Then, if we define sign A = (—l)le“ A+l e can prove that

Z sign(A)| =0

Ais a cyclically ordered
partition of {1,...,m }

for all m > 1 if we can find such a function.

Let / be the function defined by

peay < | ALV Aiss s Ay A= (1)
{1}’ Ak\ {1}’ . "’An+k IfAE + {1}

where A4}, denotes the unique part of A containing 1.

Then, sign f(A) = —signf (A).

* In the first case, we are merging two parts, A and 4,1, decreasing the number
of parts by one.

* In the second case, we are splitting apart 4 into two parts— one that contains
{1} and one that doesn’t.

Moreover f is an involution, therefore it is a bijection.
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* If A; = {1}, then on applying /" it will be merged with the next nonempty
part. Upon applying f again, it will be split apart from this part, reversing what
happened.

* If A, # {1}, then on applying / we get rid of all elements that aren’t 1 and put
them in a new part. Upon applying / again, these elements will be merged into
our original part again, reversing what happened.

Moreover, this map is actually only defined whenever 7 > 1, asin the m = 1 case,
it’s impossible to do any splitting or merging of parts.

This proves that

0, otherwise.

Z sign(A) | = {1’ itm=1;

Ais a cyclically ordered
partition of {1,...,m}

Hence

1, ifm=1;
0, otherwise.

partition of {1,...,m}

Which finally tells us that

(o)

(logoexp)(x) = Z Z (-1)"*1 g = x,

m=0 | 4y,..., 4y, is a cyclically ordered
partition of {1,...,m}

which completes the proof}
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