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1 Introduction
Definition 1.1. The power series exp and log are defined

exp(𝑥) ≔
∞∑
𝑛=0

𝑥𝑛

𝑛!
, (1)

log(𝑥) ≔
∞∑
𝑛=1

(−1)𝑛+1 (𝑥 − 1)𝑛
𝑛

. (2)

We wish to show the following:

Theorem 1.2.
(exp ◦ log) (𝑥) = (log ◦ exp) (𝑥) = 𝑥. (3)

You can show this using Lagrange inversion. However, we will do this with our
bare hands.

Here is a small amount of some “boilerplate” we’ll need:
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Definition 1.3. Let 𝑎1, . . . , 𝑎𝑘 ≥ 0, and let 𝑛 = 𝑎1 + · · · + 𝑎𝑘 . The corresponding
multinomial coefficient for this tuple is(

𝑛
𝑎1, . . . , 𝑎𝑘

)
≔

𝑛!
𝑎1! · · · 𝑎𝑘!

.

Proposition 1.4. The multinomial coefficient(
𝑛

𝑎1, . . . , 𝑎𝑘

)
≔

𝑛!
𝑎1! · · · 𝑎𝑘!

counts the number of partitions of the set {1, . . . , 𝑘} into parts 𝐴1, . . . , 𝐴𝑘 , such
that |𝐴1 | = 𝑎1, . . . , |𝐴𝑘 | = 𝑎𝑘 .

Proposition 1.5 (“Power rule”).( ∞∑
𝑚=1

𝑐𝑚𝑥𝑚
)𝑛

=
∞∑

𝑚=0


∑

𝑎1,...,𝑎𝑛≥1
𝑎1+···+𝑎𝑛=𝑚

𝑐𝑎1 · · · 𝑐𝑎𝑛

 𝑥
𝑚 (4)

2 Proof
We first grind out a raw expression for the coefficients of log ◦ exp, as an exponential
generating function, then demonstrate that each coefficient is a signed sum of cyclically
ordered set partitions—we then demonstrate cancellation.

Proof of Theorem 1.2.

log︸︷︷︸
expand

(
exp(𝑥)

)

=
∞∑
𝑛=1

(−1)𝑛+1
( expand︷ ︸︸ ︷
exp(𝑥) −1

)𝑛
𝑛

2



exp is the inverse of log Jasper Ty

=
∞∑
𝑛=1

(−1)𝑛+1

Use “power rule” (4)︷       ︸︸       ︷( ∞∑
𝑚=1

𝑥𝑚

𝑚!

)𝑛
𝑛

=
∞∑
𝑛=1

(−1)𝑛+1

[∑∞
𝑚=0

∑
𝑎1,...,𝑎𝑛≥1
𝑎1+···+𝑎𝑛=𝑚

1
𝑎1!· · ·𝑎𝑛! 𝑥

𝑚

]
𝑛︸︷︷︸

break up fraction

=
∞∑
𝑛=1

(−1)𝑛+1
𝑛︸    ︷︷    ︸

move into innermost sum

∞∑
𝑚=0

∑
𝑎1,...,𝑎𝑛≥1
𝑎1+···+𝑎𝑛=𝑚

1
𝑎1! · · · 𝑎𝑛!

𝑥𝑚

=
∞∑
𝑛=1

∞∑
𝑚=0︸  ︷︷  ︸

interchange sums

∑
𝑎1,...,𝑎𝑛≥1
𝑎1+···+𝑎𝑛=𝑚

(−1)𝑛+1
𝑛

1
𝑎1! · · · 𝑎𝑛!

𝑥𝑚

=
∞∑

𝑚=0

∞∑
𝑛=1

∑
𝑎1,...,𝑎𝑛≥1
𝑎1+···+𝑎𝑛=𝑚︸           ︷︷           ︸

this quantifies over all strong compositions of 𝑚

(−1)𝑛+1
𝑛

1
𝑎1! · · · 𝑎𝑛!

𝑥𝑚

=
∞∑

𝑚=0

∑
𝑎1,...,𝑎𝑛 is a

strong composition of𝑚

(−1)𝑛+1
𝑛

1
𝑎1! · · · 𝑎𝑛!

𝑥𝑚︸           ︷︷           ︸
multiply by 1=𝑚!/𝑚!

=
∞∑

𝑚=0

∑
𝑎1,...,𝑎𝑛 is a

strong composition of𝑚

(−1)𝑛+1
𝑛

𝑚!
𝑎1! · · · 𝑎𝑛!︸      ︷︷      ︸
=( 𝑚

𝑎1 ,...,𝑎𝑛
)

𝑥𝑚

𝑚!

=
∞∑

𝑚=0

∑
𝑎1,...,𝑎𝑛 is a

strong composition of𝑚

(−1)𝑛+1
𝑛

(
𝑚

𝑎1, . . . , 𝑎𝑛

)
︸         ︷︷         ︸

convert multiplicity into summation

𝑥𝑚

𝑚!
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=
∞∑

𝑚=0

∑
𝑎1,...,𝑎𝑛 is a

strong composition of𝑚

∑
𝐴1,...,𝐴𝑛 is a partition

of {1,...,𝑚}
|𝐴1 |=𝑎1,..., |𝐴𝑛 |=𝑎𝑛︸                                      ︷︷                                      ︸

this quantifies over all ordered set partitions of{1,...,𝑚}

(−1)𝑛+1
𝑛

𝑥𝑚

𝑚!

=
∞∑

𝑚=0

∑
𝐴1,...,𝐴𝑛 is a partition

of {1,...,𝑚}

(−1)𝑛+1
𝑛︸    ︷︷    ︸

this adds a cyclic symmetry,
which we will now prove

𝑥𝑚

𝑚!

=
∞∑

𝑚=0

∑
𝐴1,...,𝐴𝑛 is a partition

of {1,...,𝑚}︸              ︷︷              ︸
break apart parts and order

(𝑛 − 1)!
𝑛!

(−1)𝑛+1 𝑥
𝑚

𝑚!

=
∞∑

𝑚=0

∑
A is an unordered

partition of {1,...,𝑚}

∑
𝐴1,...,𝐴𝑛 is an ordering

ofA’s parts︸               ︷︷               ︸
there are 𝑛! such orders

(𝑛 − 1)!
𝑛!

(−1)𝑛+1 𝑥
𝑚

𝑚!

=
∞∑

𝑚=0

∑
A is an unordered

partition of {1,...,𝑚}

𝑛! (𝑛 − 1)!
𝑛!

(−1)𝑛+1 𝑥
𝑚

𝑚!

=
∞∑

𝑚=0

∑
A is an unordered

partition of {1,...,𝑚}

(𝑛 − 1)!︸   ︷︷   ︸
convert multiplicity into sum— this is

the # of cyclic orders of length 𝑛

(−1)𝑛+1 𝑥
𝑚

𝑚!

=
∞∑

𝑚=0

∑
A is an unordered

partition of {1,...,𝑚}

∑
𝐴1,...,𝐴𝑛 is a cyclic
ordering ofA’s parts

(−1)𝑛+1 𝑥
𝑚

𝑚!

=
∞∑

𝑚=0


∑

𝐴1,...,𝐴𝑛 is a cyclically ordered
partition of {1,...,𝑚}

(−1)𝑛+1

︸                                    ︷︷                                    ︸
voilà!

𝑥𝑚

𝑚!
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Now for this series to be equal to 𝑥, it must be that
∑

𝐴1,...,𝐴𝑛 is a cyclically ordered
partition of {1,...,𝑚}

(−1)𝑛+1


=

{
1, if𝑚 = 1;
0, otherwise.

We will prove this using a sign-reversing involution— a function which records
exactly how terms cancel out in a sum.

Cancellation principle. Let 𝑋 be a finite set and let sign : 𝑋 → R.
If 𝑓 : 𝑋 → 𝑋 is a bijection such that sign 𝑓 (𝑥) = − sign 𝑓 (𝑥) for all
𝑥 ∈ 𝑋 , then

∑
𝑥∈𝑋 sign 𝑥 = 0.

Now, if we define signA = (−1)lenA+1, we can prove that
∑

A is a cyclically ordered
partition of {1,...,𝑚}

sign(A)

 = 0

for all𝑚 > 1 if we can find such a function.
Let 𝑓 be the function defined by

𝑓 (A) =
{
𝐴𝑘 ∪ 𝐴𝑘+1, . . . , 𝐴𝑛+𝑘 if 𝐴𝑘 = {1}
{1}, 𝐴𝑘 \ {1}, . . . , 𝐴𝑛+𝑘 if 𝐴𝑘 ≠ {1}

where 𝐴𝑘 is the part ofA containing 1.
Then, sign 𝑓 (A) = − sign 𝑓 (A).

• In the first case, we are merging two parts, 𝐴𝑘 and 𝐴𝑘+1, decreasing the number
of parts by one.

• In the second case, we are splitting apart 𝐴𝑘 into two parts— one that contains
{1} and one that doesn’t.

Moreover 𝑓 is an involution, therefore it is a bijection.

• If 𝐴𝑘 = {1}, then on applying 𝑓 it will be merged with the next nonempty
part. Upon applying 𝑓 again, it will be split apart from this part, reversing what
happened.
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• If 𝐴𝑘 ≠ {1}, then on applying 𝑓 we get rid of all elements that aren’t 1 and put
them in a new part. Upon applying 𝑓 again, these elements will be merged into
our original part again, reversing what happened.

Moreover, this map is actually only defined whenever𝑚 > 1, as in the𝑚 = 1 case,
it’s impossible to do any splitting or merging of parts.

This proves that
∑

A is a cyclically ordered
partition of {1,...,𝑚}

sign(A)

 =

{
1, if𝑚 = 1;
0, otherwise.

Hence

(log ◦ exp) (𝑥) =
∞∑

𝑚=0


∑

𝐴1,...,𝐴𝑛 is a cyclically ordered
partition of {1,...,𝑚}

(−1)𝑛+1


𝑥𝑚

𝑚!
= 𝑥,

which completes the proof. □
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